Thu, 10 Nov 2022

12:00 - 13:00
L6

Sustained oscillations in hyperbolic-parabolic systems of viscoelasticity

Athanasios Tzavaras
(KAUST)
Abstract

This talk is motivated by work on the existence theory for viscoelasticity of Kelvin-Voigt type with non-convex stored energies (joint with K. Koumatos (U. of Sussex), C. Lattanzio and S. Spirito (U. of LAquila)), which shows propagation of H1-regularity for the deformation gradient of weak solutions for semiconvex stored energies. It turns out that weak solutions with deformation gradient in H1 are in fact unique in two-space dimensions, providing a striking analogy to corresponding results in the theory of 2D Euler equations with bounded vorticity.

While weak solutions still exist for initial data in L2, oscillations on the deformation gradi- ent can now persist and propagate in time. This can be seen via a counterexample indicating that for non-monotone stress-strain relations in 1-d oscillations of the strain lead to solutions with sustained oscillations. The existence of sustained oscillations in hyperbolic-parabolic system is then studied in several examples motivated by viscoelasticity and thermoviscoelas- ticity. Sufficient conditions for persistent oscillations are developed for linear problems, and examples in some nonlinear systems of interest. In several space dimensions oscillatory exam- ples are associated with lack of rank-one convexity of the stored energy. Nonlinear examples in models with thermal effects are also developed.

Thu, 20 Oct 2022

12:00 - 13:00
L6

Analysis and Numerical Approximation of Stationary Second-order Mean Field Game Partial Differential Inclusions

Yohance Osborne
(University College London)
Abstract

The formulation of Mean Field Games (MFG) via partial differential equations typically requires continuous differentiability of the Hamiltonian in order to determine the advective term in the Kolmogorov--Fokker--Planck equation for the density of players. However, in many cases of practical interest, the underlying optimal control problem may exhibit bang-bang controls, which typically lead to nondifferentiable Hamiltonians. In this talk we will present results on the analysis and numerical approximation of stationary second-order MFG systems for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians. In particular, we will propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the derivative of the Hamiltonian in terms of subdifferentials of convex functions. We present results that guarantee the existence of unique weak solutions to the stationary MFG PDI under a monotonicity condition similar to one that has been considered previously by Lasry and Lions. Moreover, we will propose a monotone finite element discretization of the weak formulation of the MFG PDI, and present results that confirm the strong H^1-norm convergence of the approximations to the value function and strong L^q-norm convergence of the approximations to the density function. The performance of the numerical method will be illustrated in experiments featuring nonsmooth solutions. This talk is based on joint work with my supervisor Iain Smears.

Mon, 10 Oct 2022
16:00
L6

Modular forms, Galois representations, and cohomology of line bundles

Aleksander Horawa
Abstract

Modular forms are holomorphic functions on the upper half plane satisfying a transformation property under the action of Mobius transformations. While they are a priori complex-analytic objects, they have applications to number theory thanks to their connection with Galois representations. Weight one modular forms are special because their Galois representations factor through a finite quotient. In this talk, we will explain a different degeneracy: they contribute to the cohomology of a line bundle over the modular curve in degrees 0 and 1. We propose an arithmetic explanation for this: an action of a unit group associated to the Galois representation of the modular form. This extends the conjectures of Venkatesh, Prasanna, and Harris. Time permitting, we will discuss a generalization to Hilbert modular forms.

Fri, 28 Oct 2022
10:00
L6

Dynamical ticket pricing for movies

Bhavesh Joshi
(MovieMe)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Movie Me would like offer dynamical pricing for movie tickets, considering consumer’s demand for the movie, showtime and lead time before the show begins, such that the overall quantity of tickets sold is maximized. We encourage all interested party to join us and especially those interested in data science, optimization and mathematical finance.

Tue, 22 Nov 2022

15:30 - 16:30
L6

Domino Shuffle and Matrix Refactorizations

Sunil Chhita
(Durham University)
Abstract

This talk is motivated by computing correlations for domino tilings of the Aztec diamond.  It is inspired by two of the three distinct methods that have recently been used in the simplest case of a doubly periodic weighting, that is the two-periodic Aztec diamond. This model is of particular probabilistic interest due to being one of the few models having a boundary between polynomially and exponentially decaying macroscopic regions in the limit. One of the methods to compute correlations, powered by the domino shuffle, involves inverting the Kasteleyn matrix giving correlations through the local statistics formula. Another of the methods, driven by a Wiener-Hopf factorization for two- by-two matrix valued functions, involves the Eynard-Mehta theorem. For arbitrary weights the Wiener-Hopf factorization can be replaced by an LU- and UL-decomposition, based on a matrix refactorization, for the product of the transition matrices. In this talk, we present results to say that the evolution of the face weights under the domino shuffle and the matrix refactorization is the same. This is based on joint work with Maurice Duits (Royal Institute of Technology KTH).  

 

Tue, 15 Nov 2022

15:30 - 16:30
L6

Unitary Brownian motion, 2D log-correlated field and loop soups

Isao Sauzzede
(University of Warwick)
Abstract

I will present two examples of log-correlated fields in 2 dimensions. It is well known that the log-characteristic polynomial of a uniform unitary matrix converges toward a 1 dimensional log-correlated field, and our first example will be obtained from a dynamical version of this model. The second example will be obtained from a radically different construction, based on the Brownian loop soup that we will introduce. It will lead to a whole family of log-correlated fields. We will focus on the description of the behaviour of these objects, more than on rigorous details.

Tue, 08 Nov 2022

15:30 - 16:30
L6

Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks

Harini Desiraju
(University of Sydney)
Abstract

Conformal blocks appear in several areas of mathematical physics from random geometry to black hole physics. A probabilistic notion of conformal blocks using gaussian multiplicative chaos measures was recently formulated by Promit Ghosal, Guillaume Remy, Xin Sun, Yi Sun (arxiv:2003.03802). In this talk, I will show that the semiclassical limit of the probabilistic conformal blocks recovers a special case of the elliptic form of Painlevé VI equation, thereby proving a conjecture by Zamolodchikov. This talk is based on an upcoming paper with Promit Ghosal and Andrei Prokhorov.

Tue, 01 Nov 2022

15:30 - 16:30
L6

Entanglement negativity and mutual information after a quantum quench: Exact link from space-time duality

Katja Klobas
(University of Nottingham)
Abstract

I will present recent results on the growth of entanglement between two adjacent regions in a tripartite, one-dimensional many-body system after a quantum quench. Combining a replica trick with a space-time duality transformation a universal relation between the entanglement negativity and Renyi-1/2 mutual information can be derived, which holds at times shorter than the sizes of all subsystems. The proof is directly applicable to any local quantum circuit, i.e., any lattice system in discrete time characterised by local interactions, irrespective of the nature of its dynamics. The derivation indicates that such a relation can be directly extended to any system where information spreads with a finite maximal velocity. The talk is based on Phys. Rev. Lett. 129, 140503 (2022).

Tue, 25 Oct 2022

15:30 - 16:30
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(Indiana-Purde University)
Further Information

Seminar Cancelled

Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Tue, 18 Oct 2022

15:30 - 16:30
L6

Universal characteristics of deep neural network loss surfaces from random matrix theory

Nick Baskerville
(University of Bristol)
Abstract

Neural networks are the most practically successful class of models in modern machine learning, but there are considerable gaps in the current theoretical understanding of their properties and success. Several authors have applied models and tools from random matrix theory to shed light on a variety of aspects of neural network theory, however the genuine applicability and relevance of these results is in question. Most works rely on modelling assumptions to reduce large, complex matrices (such as the Hessians of neural networks) to something close to a well-understood canonical RMT ensemble to which all the sophisticated machinery of RMT can be applied to yield insights and results. There is experimental work, however, that appears to contradict these assumptions. In this talk, we will explore what can be derived about neural networks starting from RMT assumptions that are much more general than considered by prior work. Our main results start from justifiable assumptions on the local statistics of neural network Hessians and make predictions about their spectra than we can test experimentally on real-world neural networks. Overall, we will argue that familiar ideas from RMT universality are at work in the background, producing practical consequences for modern deep neural networks.

 

Subscribe to L6