Thu, 13 Oct 2016
16:00
L6

Representation of integers by binary forms

Stanley Yao Xiao
(Oxford)
Abstract

Let $F$ be a binary form of degree $d \geq 3$ with integer coefficients and non-zero discriminant. In this talk we give an asymptotic formula for the quantity $R_F(Z)$, the number of integers in the interval $[-Z,Z]$ representable by the binary form $F$.

This is joint work with C.L. Stewart.

Fri, 02 Dec 2016

13:00 - 14:00
L6

High-order filtered schemes for time-dependent second order HJB equations

Christoph Reisinger
(Mathematical Institute)
Abstract

In this talk, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations, with a focus on examples arising from stochastic control problems in financial engineering. We start by discussing more widely the difficulty in constructing compact and accurate approximations. The key obstacle is the requirement in the established convergence analysis of certain monotonicity properties of the schemes. We follow ideas in Oberman and Froese (2010) to introduce a suitable local modification of high order schemes, which are necessarily non-monotone, by “filtering” them with a monotone scheme. Thus, they can be proven to converge and still show an overall high order behaviour for smooth enough value functions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests. 

This talk is based on joint work with Olivier Bokanowski and Athena Picarelli.

Fri, 18 Nov 2016

13:00 - 14:00
L6

Second Year DPhil Student Talks

Zhenru Wang and Vadim Kaushansky
(Mathematical Institute)
Abstract

Zhenru Wang
Title: Multi-Index Monte Carlo Estimators for a Class of Zakai SPDEs
Abstract:   
We first propose a space-time Multi-Index Monte Carlo (MIMC) estimator for a one-dimensional parabolic SPDE of Zakai type. We compare the computational cost required for a prescribed accuracy with the Multilevel Monte Carlo (MLMC) method of Giles and Reisinger (2012). Then we extend the estimator to a two-dimensional variant of SPDE. The theoretical analysis shows the benefit of using MIMC in high dimensional problems over MLMC methods. Numerical tests confirm these finding empirically.


Vadim Kaushansky
Title: An extended structural default model with jump risk
Abstact:
We consider a structural default model in an interconnected banking network as in Itkin and Lipton (2015), where there are mutual obligations between each pair of banks. We analyse the model numerically for the case of two banks with jumps in their asset value processes. Specifically, we develop a finite difference method for the resulting two-dimensional partial integro-differential equation, and study its stability and consistency. By applying this method, we compute joint and marginal survival probabilities, as well as prices of credit default swaps (CDS) and first-to-default swaps (FTD), Credit and Debt Value Adjustments (CVA and DVA).

 

Fri, 04 Nov 2016

13:00 - 14:00
L6

Optimal Transport in general dimensions with various additional constraints

Tongseok Lim
(Mathematical Institute)
Abstract

We will introduce variants of the optimal transport problem, namely martingale optimal transport problem and subharmonic martingale transport problem. Their motivation is partly from mathematical finance. We will see that in dimension greater than one, the additional constraints imply interesting and deep mathematical subtlety on the attainment of dual problem, and it also affects heavily on the geometry of optimal solutions. If time permits, we will introduce still another variant of the martingale transport problem, called the multi-martingale optimal transport problem.

Fri, 21 Oct 2016

13:00 - 14:00
L6

Data driven nonlinear expectations for statistical robustness

Sam Cohen
(Mathematical Institute)
Abstract

In practice, stochastic decision problems are often based on statistical estimates of probabilities. We all know that statistical error may be significant, but it is often not so clear how to incorporate it into our decision making. In this informal talk, we will look at one approach to this problem, based on the theory of nonlinear expectations. We will consider the large-sample theory of these estimators, and also connections to `robust statistics' in the sense of Huber.

Tue, 14 Jun 2016
16:30
L6

Counting Designs

Peter Keevash
(Oxford)
Abstract

A Steiner Triple System on a set X is a collection T of 3-element subsets of X such that every pair of elements of X is contained in exactly one of the triples in T. An example considered by Plücker in 1835 is the affine plane of order three, which consists of 12 triples on a set of 9 points. Plücker observed that a necessary condition for the existence of a Steiner Triple System on a set with n elements is that n be congruent to 1 or 3 mod 6. In 1846, Kirkman showed that this necessary condition is also sufficient. In 1974, Wilson conjectured an approximate formula for the number of such systems. We will outline a proof of this
conjecture, and a more general estimate for the number of Steiner systems. Our main tool is the technique of Randomised Algebraic Construction, which
we introduced to resolve a question of Steiner from 1853 on the existence of designs.

Wed, 25 May 2016
16:00
L6

A counterexample concerning regularity properties for systems of conservation laws

Laura Caravenna
(Università degli Studi di Padova)
Abstract
In 1973 D. G. Schaeffer established an interesting regularity result that applies to scalar conservation laws with uniformly convex fluxes. Loosely speaking, it can be formulated as follows: for a generic smooth initial datum, the admissible solution is smooth outside a locally finite number of curves in the time-space plane. Here the term ``generic`` should be interpreted in a suitable technical sense, related to the Baire Category Theorem. Several author improved later his result, also for numerical purposes, while only C. M. Dafermos and X. Cheng extended it in 1991 to a special 2x2 system with coinciding shock and rarefaction curves and which satisfies an assumption that reframes what in the scalar case is the assumption of uniformly convex flux, called `genuine nonlinearity'. My talk will aim at discussing a recent explicit counterexample that shows that for systems of at least three equations, even when the flux satisfies the assumption of genuinely nonlinearity, Schaeffer`s Theorem does not extend because countably many shocks might develop from a ``big`` family of smooth initial data. I will then mention related works in progress.
Subscribe to L6