Wed, 27 Nov 2024
16:00
L6

Floer Homology and Square Peg Problem

Soheil Azarpendar
(University of Oxford)
Abstract

In 1911, Otto Toeplitz posed the intriguing "Square Peg Problem," asking whether every Jordan curve admits an inscribed square. Despite over a century of study, the problem remains unsolved in its full generality. However, significant progress has been made over the years. In this talk, we explore recent advancements by Andrew Lobb and Joshua Greene, who approach the problem through the lens of Lagrangian Floer homology. Specifically, we outline a proof of their result: every smooth Jordan curve inscribes every rectangle up to similarity.

Tue, 18 Feb 2025
15:00
L6

Dynamical alternating groups and the McDuff property

David Kerr
Abstract

In operator algebra theory central sequences have long played a significant role in addressing problems in and around amenability, having been used both as a mechanism for producing various examples beyond the amenable horizon and as a point of leverage for teasing out the finer structure of amenable operator algebras themselves. One of the key themes on the von Neumann algebra side has been the McDuff property for II_1 factors, which asks for the existence of noncommuting central sequences and is equivalent, by a theorem of McDuff, to tensorial absorption of the unique hyperfinite II_1 factor. We will show that, for a topologically free minimal action of a countable amenable group on the Cantor set, the von Neumann algebra of the associated dynamical alternating group is McDuff. This yields the first examples of simple finitely generated nonamenable groups for which the von Neumann algebra is McDuff. This is joint work with Spyros Petrakos.

Wed, 20 Nov 2024
16:00
L6

Division rings in the service of group theory

Pablo Sánchez-Peralta
(Universidad Autonoma de Madrid)
Abstract

Embedding the group algebra into a division ring has proven to be a powerful tool for detecting structural properties of the group, especially in relation to its homology. In this talk, we will show how division rings can be used to identify residual properties of groups, one-ended groups, and coherent groups. We will place special emphasis on the class of free-by-cyclic groups to provide a clear, explicit exposition.

Wed, 13 Nov 2024
16:00
L6

The McCullough-Miller space for RAAGs

Peio Gale
(Public University of Navarre)
Abstract

The McCullough-Miller space is a contractible simplicial complex that admits an action of the pure symmetric (outer) automorphisms of the free group, with stabilizers that are free abelian. This space has been used to derive several cohomological properties of these groups, such as computing their cohomology ring and proving that they are duality groups. In this talk, we will generalize the construction to right-angled Artin groups (RAAGs), and use it to obtain some interesting cohomological results about the pure symmetric (outer) automorphisms of RAAGs.

Wed, 06 Nov 2024
16:00
L6

Presentations of Bordism Categories

Filippos Sytilidis
(University of Oxford)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves considering presentations of bordism categories in terms of generators and relations. In this talk, we will introduce these concepts and outline a program for obtaining such presentations using Morse–Cerf theory.

Fri, 08 Nov 2024
12:00
L6

Carroll approach to flat space holography in 3d

Daniel Grumiller
(TU Vienna)
Abstract

Introduction to flat space holography in three dimensions and Carrollian CFT2, with selected results on correlation functions, thermal entropy, entanglement entropy and an outlook to Bondi news in 3d.

Tue, 21 Jan 2025
15:00
L6

Counting non-simple closed geodesics on random hyperbolic surfaces

Laura Monk
Abstract
The aim of this talk is to present new results related to the length spectrum of random hyperbolic surfaces. The Weil-Petersson model is a beautiful probabilistic model that was popularised by Mirzakhani to study random hyperbolic surfaces. In this continuous model, it is easy to argue that there exists a density function V_g(l) which "counts" how many closed geodesics of length l an average surface of genus g contains. In the case where we only count simple geodesics (with no self-intersections), Mirzakhani proved explicit formulas for this density, writing it as a polynomial function that can be interpreted in terms of volumes of moduli spaces. I will present joint work with Nalini Anantharaman where we obtain new explicit formulas for any fixed topology. Notably, I will present new coordinate systems on Teichmüller spaces in which the Weil-Petersson volume has a surprisingly simple expression.
 
Though purely geometric, those results were obtained in a project related to the spectral gap of the Laplacian. I will present applications of the techniques presented in this talk to this problem at the RMT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.
Wed, 30 Oct 2024
16:00
L6

Counting subgroups of surface groups

Sophie Wright
(University of Bristol)
Abstract

The fundamental group of a hyperbolic surface has an infinite number of rank k subgroups. What does it mean, therefore, to pick a 'random' subgroup of this type? In this talk, I will introduce a method for counting subgroups and discuss how counting allows us to study the properties of a random subgroup and its associated cover.

Fri, 08 Nov 2024
14:30
L6

Celestial Holography from Euclidean AdS space

Lorenzo Iacobacci
(ULB)
Abstract

We will explore the connection between Celestial and Euclidean Anti-de Sitter (EAdS) holography in the massive scalar case. Specifically, exploiting the so-called hyperbolic foliation of Minkowski space-time, we will show that each contribution to massive Celestial correlators can be reformulated as a linear combination of contributions to corresponding massive Witten correlators in EAdS. This result will be demonstrated explicitly both for contact diagrams and for the four-point particle exchange diagram, and it extends to all orders in perturbation theory by leveraging the bootstrapping properties of the Celestial CFT (CCFT).  Within this framework, the Kantorovic-Lebedev transform plays a central role. This transform will allow us to make broader considerations regarding non-perturbative properties of a CCFT.

Subscribe to L6