Thu, 26 Feb 2015

17:30 - 18:30
L6

The existential theory of equicharacteristic henselian valued fields

William Anscombe
(Leeds)
Abstract

We present some recent work - joint with Arno Fehm - in which we give an `existential Ax-Kochen-Ershov principle' for equicharacteristic henselian valued fields. More precisely, we show that the existential theory of such a valued field depends only on the existential theory of the residue field. In residue characteristic zero, this result is well-known and follows from the classical Ax-Kochen-Ershov Theorems. In arbitrary (but equal) characteristic, our proof uses F-V Kuhlmann's theory of tame fields. One corollary is an unconditional proof that the existential theory of F_q((t)) is decidable. We will explain how this relates to the earlier conditional proof of this result, due to Denef and Schoutens.
 

Thu, 19 Feb 2015

17:30 - 18:30
L6

Hardy type derivations on the surreal numbers

Alessandro Berarducci
(Universita di Pisa)
Abstract

The field of transseries was introduced by Ecalle to give a solution to Dulac's problem, a weakening of Hilbert's 16th problem. They form an elementary extension of the real exponential field and have received the attention of model theorists. Another such elementary extension is given by Conway's surreal numbers, and various connections with the transseries have been conjectured, among which the possibility of introducing a Hardy type derivation on the surreal numbers. I will present a complete solution to these conjectures obtained in collaboration with Vincenzo Mantova.
 

Thu, 05 Feb 2015

17:30 - 18:30
L6

Triangulation of definable monotone families of compact sets

Nicolai Vorobjov
(University of Bath)
Abstract

Let $K\subset {\mathbb R}$ be a compact definable set in an o-minimal structure over $\mathbb R$, e.g. a semi-algebraic or a real analytic set. A definable family $\{S_\delta\ |  0<\delta\in{\mathbb R}\}$ of compact subsets of $K$, is called a monotone family if $S_\delta\subset S_\eta$ for all sufficiently small $\delta>\eta>0$. The main result in the talk is that when $\dim K=2$ or $\dim K=n=3$ there exists a definable triangulation of $K$ such that for each (open) simplex $\Lambda$ of the triangulation and each small enough $\delta>0$, the intersections $S_\delta\cap\Lambda$ is equivalent to one of five (respectively, nine) standard families in the standard simplex (the equivalence relation and a standard family will be formally defined). As a consequence, we prove the two-dimensional case of the topological conjecture on approximation of definable sets by compact families.

This is joint work with Andrei Gabrielov (Purdue).

Thu, 29 Jan 2015

17:30 - 18:30
L6

Special subvarieties of additive extensions

Harry Schmidt
(University of Basel)
Abstract

Let ${\cal E}$ be a family of elliptic curves over a base variety defined over $\mathbb C$. An additive extension ${\cal G}$ of ${\cal E}$ is a family of algebraic groups which fits into an exact sequence of group schemes $0\rightarrow {\mathbb G}_{\rm a}\rightarrow {\cal G}\rightarrow {\cal E}\rightarrow 0$. We can define the special subvarieties of ${\cal G}$ to be families of algebraic groups over the same base contained in ${\cal G}$. The relative Manin-Mumford conjecture suggests that the intersection of a curve in ${\cal G}$ with the special subvarieties of dimension 0 is contained in a finite union of special subvarieties.

To prove this we can assume that the family ${\cal E}$ is the Legendre family and then follow the strategy employed by Masser-Zannier for their proof of the relative Manin-Mumford conjecture for the fibred product of two legendre families. This has applications to classical problems such as the theory of elementary integration and Pell's equation in polynomials.

Thu, 05 Mar 2015

12:00 - 13:00
L6

Optimal shape and location of actuators or sensors in PDE models

Yannick Privat
(Laboratoire Jacques-Louis Lions)
Abstract
We investigate the problem of optimizing the shape and

location of actuators or sensors for evolution systems

driven by a partial differential equation, like for

instance a wave equation, a Schrödinger equation, or a

parabolic system, on an arbitrary domain Omega, in

arbitrary dimension, with boundary conditions if there

is a boundary, which can be of Dirichlet, Neumann,

mixed or Robin. This kind of problem is frequently

encountered in applications where one aims, for

instance, at maximizing the quality of reconstruction

of the solution, using only a partial observation. From

the mathematical point of view, using probabilistic

considerations we model this problem as the problem of

maximizing what we call a randomized observability

constant, over all possible subdomains of Omega having

a prescribed measure. The spectral analysis of this

problem reveals intimate connections with the theory of

quantum chaos. More precisely, if the domain Omega

satisfies some quantum ergodic assumptions then we

provide a solution to this problem.



These works are in collaboration with Emmanuel Trélat

(Univ. Paris 6) and Enrique Zuazua (BCAM Bilbao, Spain).
Thu, 26 Feb 2015

12:00 - 13:00
L6

Stability in exponential time of Minkowski Space-time with a translation space-like Killing field

Cecile Huneau
(Ecole Normale Superieure)
Abstract
In the presence of a translation space-like Killing field

the 3 + 1 vacuum Einstein equations reduce to the 2 + 1

Einstein equations with a scalar field. We work in

generalised wave coordinates. In this gauge Einstein

equations can be written as a system of quaslinear

quadratic wave equations. The main difficulty is due to

the weak decay of free solutions to the wave equation in 2

dimensions. To prove long time existence of solutions, we

have to rely on the particular structure of Einstein

equations in wave coordinates. We also have to carefully

choose the behaviour of our metric in the exterior region

to enforce convergence to Minkowski space-time at

time-like infinity.
Thu, 19 Feb 2015

12:00 - 13:00
L6

Linear inviscid damping for monotone shear flows.

Christian Zillinger
(University of Bonn)
Abstract
While the 2D Euler equations incorporate
neither dissipation nor entropy increase and
even possess a Hamiltonian structure, they
exhibit damping close to linear shear flows.
The mechanism behind this "inviscid
damping" phenomenon is closely related to
Landau damping in plasma physics.
In this talk I give a proof of linear stability,
scattering and damping for general
monotone shear flows, both in the setting
of an infinite periodic channel and a finite
periodic channel with impermeable walls.
Thu, 12 Feb 2015

12:00 - 13:00
L6

Twinning in Strained Ferroelastics: Microstructure and Statistics

Xiangdong Ding
(xi'an Jiatong University)
Abstract

The generation of functional interfaces such as superconducting and ferroelectric twin boundaries requires new ways to nucleate as many interfaces as possible in bulk materials and thin films. Materials with high densities of twin boundaries are often ferroelastics and martensites. Here we show that the nucleation and propagation of twin boundaries depend sensitively on temperature and system size. The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law.We find that the complexity of the pattern can be well characterized by the number of junctions between twin boundaries. Materials with soft bulk moduli have much higher junction densities than those with hard bulk moduli. Soft materials also show an increase in the junction density with diminishing sample size. The change of the complexity and the number density of twin boundaries represents an important step forward in the development of ‘domain boundary engineering’, where the functionality of the materials is directly linked to the domain pattern.

Thu, 22 Jan 2015

12:00 - 13:00
L6

HYPOCOERCIVITY AND GEOMETRIC CONDITIONS IN KINETIC THEORY.

Harsha Hutridurga
(Cambridge University)
Abstract
We shall discuss the problem of the 'trend to equilibrium' for a 

degenerate kinetic linear Fokker-Planck equation. The linear equation is 

assumed to be degenerate on a subregion of non-zero Lebesgue measure in the 

physical space (i.e., the equation is just a transport equation with a 

Hamiltonian structure in the subregion). We shall give necessary and 

sufficient geometric condition on the region of degeneracy which guarantees 

the exponential decay of the semigroup generated by the degenerate kinetic 

equation towards a global Maxwellian equilibrium in a weighted Hilbert 

space. The approach is strongly influenced by C. Villani's strategy of 

'Hypocoercivity' from Kinetic theory and the 'Bardos-Lebeau-Rauch' 

geometric condition from Control theory. This is a joint work with Frederic 

Herau and Clement Mouhot.
Subscribe to L6