Continuous solutions to the degenerate Stefan problem
Abstract
We consider the two-phase Stefan problem with p-degenerate diffusion, p larger than two, and we prove continuity up to the boundary for weak solutions, providing a modulus of continuity which we conjecture to be optimal. Since our results are proven in the form of a priori estimates for appropriate regularized problems, as corollary we infer the existence of a globally continuous weak solution for continuous Cauchy-Dirichlet datum.
Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux
Abstract
I will show uniqueness result for BV solutions of scalar conservation laws with discontinuous flux in several space dimensions. The proof is based on the notion of kinetic solution and on a careful analysis of the entropy dissipation along the discontinuities of the flux.
Colouring graphs without odd holes
Abstract
Gyárfás conjectured in 1985 that if $G$ is a graph with no induced cycle of odd length at least 5, then the chromatic number of $G$ is bounded by a function of its clique number. We prove this conjecture. Joint work with Paul Seymour.
Cycles in triangle-free graphs of large chromatic number
Abstract
More than twenty years ago Erdős conjectured that a triangle-free graph $G$ of chromatic number $k$ contains cycles of at least $k^{2−o(1)}$ different lengths. In this talk we prove this conjecture in a stronger form, showing that every such $G$ contains cycles of $ck^2\log k$ consecutive lengths, which is tight. Our approach can be also used to give new bounds on the number of different cycle lengths for other monotone classes of $k$-chromatic graphs, i.e., clique-free graphs and graphs without odd cycles.
Joint work with A. Kostochka and J. Verstraete.
The structure of graphs which are locally indistinguishable from a lattice.
Abstract
We study the properties of finite graphs in which the ball of radius $r$ around each vertex induces a graph isomorphic to some fixed graph $F$. (Such a graph is said to be $r$-locally-$F$.) This is a natural extension of the study of regular graphs, and of the study of graphs of constant link. We focus on the case where $F$ is $\mathbb{L}^d$, the $d$-dimensional integer lattice. We obtain a characterisation of all the finite graphs in which the ball of radius $3$ around each vertex is isomorphic to the ball of radius $3$ in $\mathbb{L}^d$, for each integer $d$. These graphs have a very rigidly proscribed global structure, much more so than that of $(2d)$-regular graphs. (They can be viewed as quotient lattices in certain 'flat orbifolds'.) Our results are best possible in the sense that '3' cannot be replaced with '2'. Our proofs use a mixture of techniques and results from combinatorics, algebraic topology and group theory. We will also discuss some results and open problems on the properties of a random n-vertex graph which is $r$-locally-$F$. This is all joint work with Itai Benjamini (Weizmann Institute of Science).
Martensitic Disclinations, Modeling Analysis and Experiments
Stochastic and Multiscale Problems
Abstract
The aim of this two-day workshop is to bring together mathematicians, biologists and researchers from other disciplines whose work involves stochastic and multiscale phenomenon, to identify common methodologies to studying such systems, both from a numerical and analytical perspective. Relevant topics include asymptotic methods for PDEs; multiscale analysis of stochastic dynamical systems; mean-field limits of collective dynamics. Numerical methods, mathematical theory and applications (with a specific focus on biology) will all be discussed. The workshop will take place on the 1st and 2nd of September, at the Mathematical Institute, Oxford University. Please visithttps://sites.google.com/site/stochmultiscale2014/ for more information and to register.
Stochastic and Multiscale Problems
Abstract
The aim of this two-day workshop is to bring together mathematicians, biologists and researchers from other disciplines whose work involves stochastic and multiscale phenomenon, to identify common methodologies to studying such systems, both from a numerical and analytical perspective. Relevant topics include asymptotic methods for PDEs; multiscale analysis of stochastic dynamical systems; mean-field limits of collective dynamics. Numerical methods, mathematical theory and applications (with a specific focus on biology) will all be discussed. The workshop will take place on the 1st and 2nd of September, at the Mathematical Institute, Oxford University. Please visithttps://sites.google.com/site/stochmultiscale2014/ for more information and to register.
Rank Dependent Utility and Risk Taking
Abstract
We analyze the portfolio choice problem of investors who maximize rank dependent utility in a single-period complete market. We propose a new
notion of less risk taking: choosing optimal terminal wealth that pays off more in bad states and less in good states of the economy. We prove that investors with a less risk averse preference relation in general choose more risky terminal wealth, receiving a risk premium in return for accepting conditional-zero-mean noise (more risk). Such general comparative static results do not hold for portfolio weights, which we demonstrate with a counter-example in a continuous-time model. This in turn suggests that our notion of less risk taking is more meaningful than the traditional notion based on holding less stocks.
This is a joint work with Xuedong He and Roy Kouwenberg.