Fri, 30 May 2014

13:00 - 14:00
L6

Big Data: Unleashing the Limitless

Ning Wang
Abstract

We are dwelling in the Big Data age. The diversity of the uses

of Big Data unleashes limitless possibilities. Many people are talking

about ways to use Big Data to track the collective human behaviours,

monitor electoral popularity, and predict financial fluctuations in

stock markets, etc. Big Data reveals both challenges and opportunities,

which are not only related to technology but also to human itself. This

talk will cover various current topics and trends in Big Data research.

The speaker will share his relevant experiences on how to use analytics

tools to obtain key metrics on online social networks, as well as

present the challenges of Big Data analytics.

\\

Bio: Ning Wang (Ph.D) works as Researcher at the Oxford Internet

Institute. His research is driven by a deep interest in analysing a wide

range of sociotechnical problems by exploiting Big Data approaches, with

the hope that this work could contribute to the intersection of social

behavior and computational systems.

Mon, 10 Mar 2014
15:30
L6

G-equivariant open-closed TCFTs

Jeff Giansiracusa
(Swansea)
Abstract

Open 2d TCFTs correspond to cyclic A-infinity algebras, and Costello showed

that any open theory has a universal extension to an open-closed theory in

which the closed state space (the value of the functor on a circle) is the

Hochschild homology of the open algebra.  We will give a G-equivariant

generalization of this theorem, meaning that the surfaces are now equipped

with principal G-bundles.  Equivariant Hochschild homology and a new ribbon

graph decomposition of the moduli space of surfaces with G-bundles are the

principal ingredients.  This is joint work with Ramses Fernandez-Valencia.

Tue, 11 Mar 2014
12:00
L6

Intrinsic and extrinsic regulation of epithelial organ growth

Jeremiah Zartman
(University of Notre Dame)
Abstract

The revolution in molecular biology within the last few decades has led to the identification of multiple, diverse inputs into the mechanisms governing the measurement and regulation of organ size. In general, organ size is controlled by both intrinsic, genetic mechanisms as well as extrinsic, physiological factors. Examples of the former include the spatiotemporal regulation of organ size by morphogen gradients, and instances of the latter include the regulation of organ size by endocrine hormones, oxygen availability and nutritional status. However, integrated model platforms, either of in vitro experimental systems amenable to high-resolution imaging or in silico computational models that incorporate both extrinsic and intrinsic mechanisms are lacking. Here, I will discuss collaborative efforts to bridge the gap between traditional assays employed in developmental biology and computational models through quantitative approaches. In particular, we have developed quantitative image analysis techniques for confocal microscopy data to inform computational models – a critical task in efforts to better understand conserved mechanisms of crosstalk between growth regulatory pathways. Currently, these quantitative approaches are being applied to develop integrated models of epithelial growth in the embryonic Drosophila epidermis and the adolescent wing imaginal disc, due to the wealth of previous genetic knowledge for the system. An integrated model of intrinsic and extrinsic growth control is expected to inspire new approaches in tissue engineering and regenerative medicine.

Mon, 09 Jun 2014

17:00 - 18:00
L6

Exact crystallization in a block copolymer model

Mark Peletier
(Technische Universiteit Eindhoven)
Abstract

One of the holy grails of material science is a complete characterization of ground states of material energies. Some materials have periodic ground states, others have quasi-periodic states, and yet others form amorphic, random structures. Knowing this structure is essential to determine the macroscopic material properties of the material. In theory the energy contains all the information needed to determine the structure of ground states, but in practice it is extremely hard to extract this information.

In this talk I will describe a model for which we recently managed to characterize the ground state in a very complete way. The energy describes the behaviour of diblock copolymers, polymers that consist of two parts that repel each other. At low temperature such polymers organize themselves in complex microstructures at microscopic scales.

We concentrate on a regime in which the two parts are of strongly different sizes. In this regime we can completely characterize ground states, and even show stability of the ground state to small energy perturbations.

This is work with David Bourne and Florian Theil.

Fri, 13 Jun 2014

12:00 - 13:00
L6

Shock Reflection, von Neumann conjectures, and free boundary problems

Prof. Mikhail Feldman
(University of Wisconsin-Madison)
Abstract

We discuss shock reflection problem for compressible gas dynamics, various patterns of reflected shocks, and von Neumann conjectures on transition between regular and Mach reflections. Then

we will talk about recent results on existence of regular reflection solutions for potential flow equation up to the detachment angle, and discuss some techniques. The approach is to reduce the shock

reflection problem to a free boundary problem for a nonlinear equation of mixed elliptic-hyperbolic type. Open problems will also be discussed. The talk is based on the joint work with Gui-Qiang Chen.

Thu, 13 Mar 2014

16:00 - 17:00
L6

Graph expansion and communication complexity of algorithms

Olga Holtz
(UC Berkeley & TU Berlin)
Abstract

I will discuss a novel approach to estimating communication costs of an algorithm (also known as its I/O complexity), which is based on small-set expansion for computational graphs. Various applications and implications will be discussed as well, mostly having to do with linear algebra algorithms. This includes, in particular, first known (and tight) bounds on communication complexity of fast matrix multiplication.

Joint work with Grey Ballard, James Demmel, Benjamin Lipshitz and Oded Schwartz.

Mon, 26 May 2014

17:00 - 18:00
L6

A geometric approach to some overdetermined problems in potential theory

Lorenzo Mazzieri
(Scuola Normale Superiore di Pisa)
Abstract

We present a new method to establish the rotational symmetry

of solutions to overdetermined elliptic boundary value

problems. We illustrate this approach through a couple of

classical examples arising in potential theory, in both the

exterior and the interior punctured domain. We discuss how

some of the known results can be recovered and we introduce

some new geometric overdetermining conditions, involving the

mean curvature of the boundary and the Neumann data.

Mon, 12 May 2014

17:00 - 18:00
L6

Desingularization of stationary shallow water vortices

Jean Van Schaftingen
(Universite catholique de louvain)
Abstract

I will show how families of concentrating stationary vortices for the shallow

water equations can be constructed and studied asymptotically. The main tool

is the study of asymptotics of solutions to a family of semilinear elliptic

problems. The same method also yields results for axisymmetric vortices for

the Euler equation of incompressible fluids.

Subscribe to L6