Wed, 02 Nov 2016
11:30
N3.12

Methods of Galois group computation

Adam Jones
Abstract

The problem of computing the Galois group of an irreducible, rational polynomial has been studied for many years. I will discuss the methods developed over the years to approach this problem, and give some examples of them in practice. These methods mainly involve constructing and factorising resolvent polynomials, and thereby determining better upper bounds for the conjugacy class of the Galois group within the symmetric group, i.e. describe its action on the roots of the polynomial explicitly. I will describe how using approximations to the zeros of the polynomial allows us to construct resolvents, and in particular, how using p-adic approximations can be advantageous over numerical approximations, and how this can yield a direct and systematic method of determining the Galois group.

Fri, 28 Oct 2016
09:00
N3.12

TBA

Lena Gal
(Oxford University)
Wed, 15 Jun 2016

11:30 - 12:30
N3.12

2x2 Matrices

Giles Gardam
(Oxford)
Abstract

We will explore the many guises under which groups of 2x2 matrices appear, such as isometries of the hyperbolic plane, mapping class groups and the modular group. Along the way we will learn some interesting and perhaps surprising facts.

Wed, 08 Jun 2016

11:30 - 12:30
N3.12

TBA

Alex Betts
(Oxford)
Wed, 11 May 2016

11:00 - 12:30
N3.12

Wild spheres in R3

Simon Bergant
(Oxford)
Abstract

In 1924, James W. Alexander constructed a 2-sphere in R3 that is not ambiently homeomorphic to the standard 2-sphere, which demonstrated the failure of the Schoenflies theorem in higher dimensions. I will describe the construction of the Alexander horned sphere and the Antoine necklace and describe some of their properties.

Wed, 25 May 2016

11:00 - 12:30
N3.12

TBA

Philip Dittman
(Oxford)
Subscribe to N3.12