Wed, 10 Jun 2015

11:00 - 12:30
N3.12

The arithmetic of K3 surfaces.

Chris Nicholls
(Oxford)
Abstract

In the classification of surfaces, K3 surfaces hold a place not dissimilar to that of elliptic curves within the classification of curves by genus. In recent years there has been a lot of activity on the problem of rational points on K3 surfaces. I will discuss the problem of finding the Picard group of a K3 surface, and how this relates to finding counterexamples to the Hasse principle on K3 surfaces.

Wed, 13 May 2015

11:00 - 12:30
N3.12

Prime Decompositions of Manifolds

Gareth Wilkes
(Oxford)
Abstract

The notion of prime decomposition will be defined and illustrated for
manifolds. Two proofs of existence will be given, including Kneser's
classical proof using normal surface theory.

Wed, 06 May 2015

11:00 - 12:30
N3.12

Voting Systems and Arrow's Impossibility Theorem

Robert Kropholler
(Oxford)
Abstract

With the general election looming upon I will discuss the various different kinds of voting system that one could implement in such an election. I will show that these can give very different answers to the same set of voters. I will then discuss Arrow's Impossibility Theorem which shows that no voting system is compatible with 4 simple axioms which may be desireable.

Thu, 16 Apr 2015

14:00 - 15:00
N3.12

D-modules and arithmetic: a theory of the b-function in positive characteristic.

Thomas Bitoun
(HSE Moscow)
Abstract

We exhibit a construction in noncommutative nonnoetherian algebra that should be understood as a positive characteristic analogue of the Bernstein-Sato polynomial or b-function. Recall that the b-function is a polynomial in one variable attached to an analytic function f. It is well-known to be related to the singularities of f and is useful in continuing a certain type of zeta functions, associated with f. We will briefly recall the complex theory and then emphasize the arithmetic aspects of our construction.

Wed, 11 Mar 2015

11:00 - 12:30
N3.12

Expansion, Random Walks and Sieving in SL_2(F_p[t])

Henry Bradford
(Oxford)
Abstract

Expansion, Random Walks and Sieving in $SL_2 (\mathbb{F}_p[t])$

 

We pose the question of how to characterize "generic" elements of finitely generated groups. We set the scene by discussing recent results for linear groups in characteristic zero. To conclude we describe some new work in positive characteristic.

Wed, 04 Mar 2015

11:00 - 12:30
N3.12

Soluble Profinite Groups

Ged Corob Cook
(Royal Holloway)
Abstract

Soluble groups, and other classes of groups that can be built from simpler groups, are useful test cases for studying group properties. I will talk about techniques for building profinite groups from simpler ones, and how  to use these to investigate the cohomology of such groups and recover information about the group structure.

Wed, 18 Feb 2015

11:00 - 12:30
N3.12

Groups acting on R(ooted) Trees

Alejandra Garrido
(Oxford)
Abstract

In particular, some nice things about branch groups, whose subgroup structure  "sees" all actions on rooted trees.

Tue, 17 Feb 2015

11:00 - 12:30
N3.12

Groups acting on R(ooted) trees

Alejandra Garrido
(Oxford)
Abstract

In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.

Wed, 11 Feb 2015

11:00 - 12:30
N3.12

The Poincaré conjecture in dimensions 3 and 4.

Alejandro Betancourt
(Oxford)
Abstract

In this talk we will review some of the main ideas around Hamilton's program for the Ricci flow and see how they fit together to provide a proof of the Poincaré conjecture in dimension 3. We will then analyse this tools in the context of 4-manifolds.

Wed, 04 Feb 2015
11:30
N3.12

A brief history of manifold classification

Gareth Wilkes
(Oxford University)
Abstract

Manifolds have been a central object of study for over a century, and the classification of them has been a core theme for the whole of this time. This talk will give an overview of the successes and failures in this effort, with some illustrative examples.

Subscribe to N3.12