Tue, 11 Sep 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Universal behavior of topological defects in nematic liquid crystals

Samo Kralj
(University of Maribor)
Abstract

Topological defects (TDs) are unavoidable consequence of continuous symmetry breaking phase transitions. They exhibit several universal features and often span apparently completely different systems. Particularly convenient testing ground to study basic physics of TDs are liquid crystals (LCs) due to their softness, liquid character and optical anisotropy. In the lecture I will present our recent theoretical studies of TDs in nematic LCs, which are of interest also to other branches of physics.

 

I will first focus on coarsening dynamics of TDs following the isotropic-nematic phase transition. Among others we have tested the validity of the Kibble-Zurek [1,2] prediction on the size of the so called protodomains, which was originally derived to estimate density of TDs as a function of inflation time in the early universe. Next I will consider nematic LC shells [3]. These systems are of interest because they could pave path to mm sized scaled crystals exhibiting different symmetries. Particular attention will be paid to curvature induced unbinding of pairs of topological defects. This process might play important role in membrane fission processes.  

 

[1] W.H. Zurek, Nature 317, 505 (1985).

[2] Z. Bradac et al.,  J.Chem.Phys 135, 024506 (2011)

[3] S. Kralj et al.,  Soft Matter 7, 670 (2011); 8, 2460  (2012).

Wed, 12 Sep 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Mono-monostatic bodies: the story of the Gömböc

Gabor Domokos
(Budapest University of Technology and Economics)
Abstract

Russian mathematician V.I.Arnold conjectured that convex, homogeneous bodies with less than four equilibria (also called mono-monostatic) may exist. Not only did his conjecture turn out to be true, the newly discovered objects show various interesting features. Our goal is to give an overview of these findings as well as to present some new results. We will point out that mono-monostatic bodies are neither flat, nor thin, they are not similar to typical objects with more equilibria and they are hard to approximate by polyhedra. Despite these "negative" traits, there seems to be strong indication that these forms appear in Nature due to their special mechanical properties.

Wed, 29 Aug 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Fast and accurate computation of Gauss-Jacobi quadratures

Nick Hale
Abstract

For a given positive measure on a fixed domain, Gaussian quadrature routines can be defined via their property of integrating an arbitrary polynomial of degree $2n+1$ exactly using only $n+1$ quadrature nodes. In the special case of Gauss--Jacobi quadrature, this means that $$\int_{-1}^1 (1+x)^\alpha(1-x)^\beta f(x) dx = \sum_{j=0}^{n} w_j f(x_j), \quad \alpha, \beta > -1, $$ whenever $f(x)$ is a polynomial of degree at most $2n+1$. When $f$ is not a polynomial, but a function analytic in a neighbourhood of $[-1,1]$, the above is not an equality but an approximation that converges exponentially fast as $n$ is increased.

An undergraduate mathematician taking a numerical analysis course could tell you that the nodes $x_j$ are roots of the Jacobi polynomial $P^{\alpha,\beta}_{n+1}(x)$, the degree $n+1$ polynomial orthogonal with respect to the given weight, and that the quadrature weight at each node is related to the derivative $P'^{\alpha,\beta}_{n+1}(x_j)$. However, these values are not generally known in closed form, and we must compute them numerically... but how?

Traditional approaches involve applying the recurrence relation satisfied by the orthogonal polynomials, or solving the Jacobi matrix eigenvalue problem in the algorithm of Golub and Welsch, but these methods are inherently limited by a minimal complexity of $O(n^2)$. The current state-of-the-art is the $O(n)$ algorithm developed by Glasier, Liu, and Rokhlin, which hops from root to root using a Newton iteration evaluated with a Taylor series defined by the ODE satisfied by $P^{\alpha,\beta}_{n+1}$.

We propose an alternative approach, whereby the function and derivative evaluations required in the Newton iteration are computed independently in $O(1)$ operations per point using certain well-known asymptotic expansions. We shall review these expansions, outline the new algorithm, and demonstrate improvements in both accuracy and efficiency. 

Fri, 12 Apr 2013

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Jen Pestana - Fast multipole method preconditioners for discretizations of elliptic PDEs
  • Derek Moulton - A tangled tale: hunt for the contactless trefoil
  • Thomas Lessines - Morphoelastic rods - growing rings, bilayers and bundles: foldable tents, shooting plants, slap bracelets & fibre reinforced tubes
Fri, 08 Mar 2013

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
(OCCAM)
Abstract
  • Wonjung Lee - Adaptive approximation of higher order posterior statistics
  • Amy Smith - Multi-scale modelling of fluid transport in the coronary microvasculature
  • Mark Curtis - The Stokes flow around arbitrary slender bodies
Fri, 08 Feb 2013

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
(OCCAM, University of Oxford)
Abstract
  • Jean-Charles Seguis - Simulation in chemotaxis and comparison of cell models
  • Laura Kimpton (née Gallimore) - A viscoelastic two-phase flow model of a crawling cell
  • Benjamin Franz - Particles and PDEs and robots
Fri, 11 Jan 2013

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Kiran Singh - Multi-body dynamics in elastocapillary systems
  • Graham Morris - Investigating a catalytic mechanism using voltammetry
  • Thomas Woolley - Cellular blebs: pressure-driven axisymmetric, membrane protrusions
Fri, 14 Dec 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Victor Burlakov - Understanding the growth of alumina nanofibre arrays
  • Brian Duffy - Measuring visual complexity of cluster-based visualisations
  • Chris Bell - Autologous chemotaxis due to interstitial flow
Fri, 09 Nov 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Joseph Parker - Numerical algorithms for the gyrokinetic equations and applications to magnetic confinement fusion
  • Rita Schlackow - Global and functional analyses of 3' untranslated regions in fission yeast
  • Peter Stewart - Creasing and folding of fibre-reinforced materials
Fri, 12 Oct 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Matt Webber - ‘Stochastic neural field theory’
  • Yohan Davit - ‘Multiscale modelling of deterministic problems with applications to biological tissues and porous media’
  • Patricio Farrell - ‘An RBF multilevel algorithm for solving elliptic PDEs’
Subscribe to OCCAM Common Room (RI2.28)