Mon, 14 May 2012

15:45 - 16:45
Oxford-Man Institute

Pathwise Holder convergence of the implicit Euler scheme for semi-linear SPDEs with multiplicative noise

JAN VAN NEERVAN
(Delft University of Technology)
Abstract

Pathwise Holder convergence with optimal rates is proved for the implicit Euler scheme associated with semilinear stochastic evolution equations with multiplicative noise. The results are applied to a class of second order parabolic SPDEs driven by space-time white noise. This is joint work with Sonja Cox.

Mon, 14 May 2012

14:15 - 15:15
Oxford-Man Institute

: "On the localization of Vertex Reinforced Random Walk on Z with weight"

BRUNO SCHAPIRA
(University Paris-Sud)
Abstract

"The model of Vertex Reinforced Random Walk (VRRW) on Z goes back to Pemantle & Volkov, '99, who proved a result of localization on 5 sites with positive probability. They also conjectured that this was the a.s. behavior of the walk. In 2004, Tarrès managed to prove this conjecture. Then in 2006, inspired by Davis'paper '90 on the edge reinforced version of the model, Volkov studied VRRW with weight on Z. 

He proved that in the strongly reinforced case, i.e. when the weight sequence is reciprocally summable, the walk localizes a.s. on 2 sites, as expected. He also proved that localization is a.s. not possible for weights growing sublinearly, but like a power of n. However, the question of localization remained open for other weights, like n*log n or n/log n, for instance. In the talk I will first review these results and formulate more precisely the open questions. Then I will present some recent results giving partial answers. This is based on joint (partly still on-going) work with Anne-Laure Basdevant and Arvind Singh."

 

 

Mon, 30 Apr 2012

15:45 - 16:45
Oxford-Man Institute

The number of connected components of zero sets of smooth Gaussian functions

MISHA SODIN
(Tel Aviv University)
Abstract

 

We find the order of growth of the typical number of components of zero sets of smooth random functions of several real variables. This might be thought as a statistical version of the (first half of) 16th Hilbert problem. The primary examples are various ensembles of Gaussian real-valued polynomials (algebraic or trigonometric) of large degree, and smooth Gaussian functions on the Euclidean space with translation-invariant distribution.

Joint work with Fedor Nazarov.

                               

 

Mon, 30 Apr 2012

14:15 - 15:15
Oxford-Man Institute

Energy of cut off functions and heat kernel upper bounds S Andres and M T Barlow*

MARTIN BARLOW
(University of British Columbia)
Abstract

It is well known that electrical resistance arguments provide (usually) the best method for determining whether a graph is transient or recurrent. In this talk I will discuss a similar characterization of 'sub-diffusive behaviour' -- this occurs in spaces with many obstacles or traps.

The characterization is in terms of the energy of functions in annuli.

Mon, 23 Apr 2012

15:45 - 16:45
Oxford-Man Institute

Splitting methods and cubature formulas for stochastic partial differential equations

PHILIPP DOERSEK
(ETH Zurich)
Abstract

We consider the approximation of the marginal distribution of solutions of stochastic partial differential equations by splitting schemes. We introduce a functional analytic framework based on weighted spaces where the Feller condition generalises. This allows us to apply the theory of strongly continuous semigroups. The possibility of achieving higher orders of convergence through cubature approximations is discussed.

Applications of these results to problems from mathematical finance (the Heath-Jarrow-Morton equation of interest rate theory) and fluid dynamics (the stochastic Navier-Stokes equations) are considered. Numerical experiments using Quasi-Monte Carlo simulation confirm the practicality of our algorithms.

Parts of this work are joint with J. Teichmann and D. Veluscek.

Mon, 23 Apr 2012

14:15 - 15:15
Oxford-Man Institute

Stochastic Diffusions for Sampling Gibbs Measures Ben Leimkuhler, University of Edinburgh

BEN LEIMKUHLER
(University of Edinburgh)
Abstract

 

I will discuss properties of stochastic differential equations and numerical algorithms for sampling Gibbs (i.e smooth) measures. Methods such as Langevin dynamics are reliable and well-studied performers for molecular sampling.   I will show that, when the objective of simulation is sampling of the configurational distribution, it is possible to obtain a superconvergence result (an unexpected increase in order of accuracy) for the invariant distribution.   I will also describe an application of thermostats to the Hamiltonian vortex method in which the energetic interactions with a bath of weak vortices are treated as thermal fluctuations

Mon, 05 Mar 2012

15:45 - 16:45
Oxford-Man Institute

How does a uniformly sampled Markov chain behave ?

CHARLES BORDENAVE
(University of Toulouse)
Abstract

This is joint work with P. Caputo and D. Chafai. In this talk, we
will consider various probability distributions on the set of stochastic
 matrices with n states and on the set of Laplacian/Kirchhoff
matrices on n states. They will arise naturally from the conductance model on
n states with i.i.d conductances. With the help of random matrix
theory, we will study the spectrum of these processes.

Mon, 27 Feb 2012

15:45 - 16:45
Oxford-Man Institute

Optimal transport, concentration of measure and functional inequalities.

NATHAEL GOZLAN
(mlv France)
Abstract

This talk is devoted to Talagrand's transport-entropy inequality and its deep connections to the concentration of measure phenomenon, large deviation theory and logarithmic Sobolev inequalities. After an introductive part on the field, I will present recent results obtained with P-M Samson and C. Roberto establishing the equivalence of Talagrand's inequality to a restricted version of the Log-Sobolev inequality. If time enables, I will also present some works in progress about transport inequalities in a discrete setting.

Mon, 27 Feb 2012

14:15 - 15:15
Oxford-Man Institute

Long-time behaviour of stochastic delay equations

Michael Scheutzow
(TU Berlin)
Abstract

Abstract: First we provide a survey on the long-time behaviour of stochastic delay equations with bounded memory, addressing existence and uniqueness of invariant measures, Lyapunov spectra, and exponential growth rates.

Then, we study the very simple one-dimensional equation $dX(t)=X(t-1)dW(t)$ in more detail and establish the existence of a deterministic exponential growth rate of a suitable norm of the solution via a Furstenberg-Hasminskii-type formula.

Parts of the talk are based on joint work with Martin Hairer and Jonathan Mattingly. 

Subscribe to Oxford-Man Institute