Mon, 21 Jan 2008
01:15
Oxford-Man Institute

Accelerated finite difference schemes

Prof. Istvan Gyongy
(Edinburgh)
Abstract

Some recent joint results with N. V. Krylov on the convergence of solutions of finite difference schemes are presented.

The finite difference schemes, considered in the talk correspond to discretizations (in the space variable) of second order parabolic and of second order elliptic (possibly degenerate) equations.

Space derivatives of the solutions to the finite difference schemes are estimated, and these estimates are applied to show that the convergence of finite difference approximations for equations in the whole space can be accelerated to any given rate. This result can be applied to stochastic PDEs, in particular to the Zakai equation of nonlinear filtering, when the signal and observation noises are independent.

Mon, 14 Jan 2008
13:15
Oxford-Man Institute

Optimal transport and curvature (monge meets Riemann)

Prof. Cedric Villani
(ENS Lyon)
Abstract

Born in France around 1780, the optimal transport problem has known a scientific explosion in the past two decades, in relation with dynamical systems and partial differential equations. Recently it has found unexpected applications in Riemannian geometry, in particular the encoding of Ricci curvature bounds

Mon, 29 Oct 2007
14:45
Oxford-Man Institute

On signed probability measures and some old results of Krylov

Prof. Terry Lyons
(Oxford)
Abstract

It is an interesting exercise to compute the iterated integrals of Brownian Motion and to calculate the expectations (of polynomial functions of these integrals).

Recent work on constructing discrete measures on path space, which give the same value as Wiener measure to certain of these expectations, has led to promising new numerical algorithms for solving 2nd order parabolic PDEs in moderate dimensions. Old work of Krylov associated finitely additive signed measures to certain constant coefficient PDEs of higher order. Recent work with Levin allows us to identify the relevant expectations of iterated integrals in this case, leaving many interesting open questions and possible numerical algorithms for solving high dimensional elliptic PDEs.

Mon, 05 Nov 2007

14:45 - 15:45
Oxford-Man Institute

SPQR (Skorokhod, Palm, Queueing and Reflection)

Dr. Takis Konstantopoulos
(Heriot Watt University, Edinburgh)
Abstract

The Skorokhod reflection problem, originally introduced as a means for constructing solutions to stochastic differential equations in bounded regions, has found applications in many areas of Probability, for example in queueing-like stochastic dynamical systems; its uses range from methods for proving limit theorems to representations of local times of diffusions and control. In this talk, I will present several applications, e.g. to Levy stochastic networks and to queueing-like systems driven by local times of Levy processes, and give an order-theoretic approach to the problem by extending the domain of functions involved from the real line to a fairly arbitrary partially ordered set. I will also discuss how Palm probabilities can be used in connection with the Skorokhod problem to obtain information about stationary solutions of certain systems.

Mon, 12 Nov 2007

13:15 - 14:15
Oxford-Man Institute

A Support Theorem and a Large Deviation Principle for Kunita stochastic flows via Rough Paths

Dr. Steffen Dereich
(Technische Universitat Berlin)
Abstract

In the past the theory of rough paths has proven to be an elegant tool for deriving support theorems and large deviation principles. In this talk I will explain how this approach can be used in the analysis of stochastic flows generated by Kunita SDE's. As driving processes I will consider general Banach space valued Wiener processes

Mon, 29 Oct 2007
13:15
Oxford-Man Institute

From super Poincare to weighted log-sobolev and transportation cost inequalities

Prof. Feng-Yu Wang
(University of Wales)
Abstract

Log-Sobolev inequalities with weighted square field are derived from a class of super Poincaré inequalities. As applications, stronger versions of Talagrand's transportation-cost inequality are provided on Riemannian manifolds. Typical examples are constructed to illustrate these results.

Mon, 19 Nov 2007

14:45 - 15:45
Oxford-Man Institute

Quadrature of Lipschitz Functionals and Approximation of Distributions

Dr. Klaus Ritter
(Technische Universitat Darmstadt)
Abstract

We study randomized (i.e. Monte Carlo) algorithms to compute expectations of Lipschitz functionals w.r.t. measures on infinite-dimensional spaces, e.g., Gaussian measures or distribution of diffusion processes. We determine the order of minimal errors and corresponding almost optimal algorithms for three different sampling regimes: fixed-subspace-sampling, variable-subspace-sampling, and full-space sampling. It turns out that these minimal errors are closely related to quantization numbers and Kolmogorov widths for the underlying measure. For variable-subspace-sampling suitable multi-level Monte Carlo methods, which have recently been introduced by Giles, turn out to be almost optimal.

Joint work with Jakob Creutzig (Darmstadt), Steffen Dereich (Bath), Thomas Müller-Gronbach (Magdeburg)

Mon, 26 Nov 2007

14:45 - 15:45
Oxford-Man Institute

TBA

Prof. Gilles Pages
(Universite de Paris VI)
Mon, 26 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Reflected Brownian motion in a wedge : sum-of-exponential stationary densities

Dr. John Moriarty
(Manchester)
Abstract

Reflected Brownian motion (RBM) in a two-dimensional wedge is a well-known stochastic process. With an appropriate drift, it is positive recurrent and has a stationary distribution, and the invariant measure is absolutely continuous with respect to Lebesgue measure. I will give necessary and sufficient conditions for the stationary density to be written as a finite sum of exponentials with linear exponents. Such densities are a natural generalisation of the stationary density of one-dimensional RBM. Using geometric ideas reminiscent of the reflection principle, I will give an explicit formula for the density in such cases, which can be written as a determinant. Joint work with Ton Dieker.

Mon, 19 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Dynamical percolation

Prof. Jeffrey Steif
(Chalmers University of Technology)
Abstract

In ordinary percolation, sites of a lattice are open with a given probability and one investigates the existence of infinite clusters (percolation). In dynamical percolation, the sites randomly flip between the states open and closed and one investigates the existence of "atypical" times at which the percolation structure is different from that of a fixed time.

1. I will quickly present some of the original results for dynamical percolation (joint work with Olle Haggstrom and Yuval Peres) including no exceptional times in critical percolation in high dimensions.

2. I will go into some details concerning a recent result that, for the 2 dimensional triangular lattice, there are exceptional times for critical percolation (joint work with Oded Schramm). This involves an interesting connection with the harmonic analysis of Boolean functions and randomized algorithms and relies on the recent computation of critical exponents by Lawler, Schramm, Smirnov, and Werner.

3. If there is time, I will mention some very recent results of Garban, Pete, and Schramm on the Fourier spectrum of critical percolation.

Subscribe to Oxford-Man Institute