Mon, 04 Nov 2013

14:15 - 15:15
Oxford-Man Institute

Coalescing flows: a new approach

Nathanael Berestycki
(University of Cambridge)
Abstract

The coalescing Brownian flow on $\R$ is a process which was introduced by Arratia (1979) and Toth and Werner (1997), and which formally corresponds to starting coalescing Brownian motions from every space-time point. We provide a new state space and topology for this process and obtain an invariance principle for coalescing random walks. The invariance principle holds under a finite variance assumption and is thus optimal. In a series of previous works, this question was studied under a different topology, and a moment of order $3-\eps$ was necessary for the convergence to hold. Our proof relies crucially on recent work of Schramm and Smirnov on scaling limits of critical percolation in the plane. Our approach is sufficiently simple that we can handle substantially more complicated coalescing flows with little extra work -- in particular similar results are obtained in the case of coalescing Brownian motions on the Sierpinski gasket. This is the first such result where the limiting paths do not enjoy the non-crossing property.

Joint work with Christophe Garban (Lyon) and Arnab Sen (Minnesota).

Mon, 28 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Small-particle scaling limits in a regularized Laplacian growth model"

Alan Sola
(University of Cambridge)
Abstract

With F. Johansson Viklund (Columbia) and A. Turner (Lancaster), we have studied a regularized version of the Hastings-Levitov model of random Laplacian growth. In addition to the usual feedback parameter $\alpha>0$, this regularized version of the growth process features a smoothing parameter $\sigma>0$.

We prove convergence of random clusters, in the limit as the size of the individual aggregating particles tends to zero, to deterministic limits, provided the smoothing parameter does not tend to zero too fast. We also study scalings limit of the harmonic measure flow on the boundary, and show that it can be described in terms of stopped Brownian webs on the circle. In contrast to the case $\alpha=0$, the flow does not always collapse into a single Brownian motion, which can be interpreted as a random number of infinite branches being present in the clusters.

Mon, 28 Oct 2013

14:15 - 15:15
Oxford-Man Institute

The boundary Harnack principle in fractal spaces

Janna Lier
(Bonn University)
Abstract

Abstract: The boundary Harnack principle states that the ratio of any two functions, which are positive and harmonic on a domain, is bounded near some part of the boundary where both functions vanish. A given domain may or may not have this property, depending on the geometry of its boundary and the underlying metric measure space.

In this talk, we will consider a scale-invariant boundary Harnack principle on domains that are inner uniform. This has applications such as two-sided bounds on the Dirichlet heat kernel, or the identification of the Martin boundary and the topological boundary for bounded inner uniform domains.

The inner uniformity provides a large class of domains which may have very rough boundary as long as there are no cusps. Aikawa and Ancona proved the scale-invariant boundary Harnack principle on inner uniform domains in Euclidean space. Gyrya and Saloff-Coste gave a proof in the setting of non-fractal strictly local Dirichlet spaces that satisfy a parabolic Harnack inequality.

I will present a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces that satisfy a parabolic Harnack inequality. This result applies to fractal spaces.

Mon, 21 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Learning an evolving system using Rough Paths Theory

Ni Hao
(University of Oxford)
Abstract

''Regression analysis aims to use observational data from multiple observations to develop a functional relationship relating explanatory variables to response variables, which is important for much of modern statistics, and econometrics, and also the field of machine learning. In this paper, we consider the special case where the explanatory variable is a stream of information, and the response is also potentially a stream. We provide an approach based on identifying carefully chosen features of the stream which allows linear regression to be used to characterise the functional relationship between explanatory variables and the conditional distribution of the response; the methods used to develop and justify this approach, such as the signature of a stream and the shue product of tensors, are standard tools in the theory of rough paths and seem appropriate in this context of regression as well and provide a surprisingly unified and non-parametric approach.''

Mon, 21 Oct 2013

14:15 - 15:15
Oxford-Man Institute

Asymptotic independence of three statistics of the maximal increments of random walks and Levy processes

Aleksandar Mijatovic
(Imperial College London)
Abstract
Abstract: Let $H(x) = \inf\{n:\, \exists\, k x\}$ be the first epoch that an increment of the size larger than $x>0$ of a random walk $S$ occurs and consider the path functionals: $$ R_n = \max_{m\in\{0, \ldots, n\}}\{S_{n} - S_m\}, R_n^* = \max_{m,k\in\{0, \ldots, n\}, m\leq k} \{S_{k}-S_m\} \text{and} O_x=R_{H(x)}-x.$$ The main result states that, under Cram\'{e}r's condition on the step-size distribution of $S$, the statistics $R_n$, $R_n^* -y$ and $O_{x+y}$ are asymptotically independent as $\min\{n,y,x\}\uparrow\infty$. Furthermore, we establish a novel Spitzer-type identity characterising the limit law $O_\infty$ in terms of the one-dimensional marginals of $S$. If $y=\gamma^{-1}\log n$, where $\gamma$ is the Cram\'er coefficient, our results together with the classical theorem of Iglehart (1972) imply the existence of a joint weak limit of the three statistics and identify its law. As corollary we obtain a new factorization of the exponential distribution as a convolution of the asymptotic overshoot $O_\infty$ and the stationary distribution of the reflected random walk $R$. We prove analogous results for the corresponding statistics of a L\'{e}vy process. This is joint work with M. Pistorius.
Mon, 14 Oct 2013

15:45 - 16:45
Oxford-Man Institute

"Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme"

Benjamin Jourdain
(CERMICS Marne la Vallee)
Abstract

(joint work with Aurélien Alfonsi and Arturo Kohatsu-Higa)

We are interested in the Wasserstein distance on the space of continuous sample-paths equipped with the supremum norm between the laws of a uniformly elliptic one-dimensional diffusion process and its continuous-time Euler scheme with N steps. This distance controls the discretization biais for a large class of path-dependent payoffs.

Its convergence rate to 0 is clearly intermediate between -the rate -1/2 of the strong error estimation obtained when coupling the stochastic differential equation and its Euler scheme with the same Brownian motion -and the rate -1 of the weak error estimation obtained when comparing the expectations of the same function of the diffusion and its Euler scheme at the terminal time.

For uniformly elliptic one-dimensional stochastic differential equations, we prove that this rate is not worse than -2/3.

Mon, 14 Oct 2013

14:15 - 15:15
Oxford-Man Institute

Stuck Walks: a conjecture of Erschler, Tóth and Werner

Daniel Kious
(University of Paul Sabatier Toulouse)
Abstract

Abstract: In 2010, Erschler, Tóth and Werner introduced the so-called Stuck Walks, which are a class of self-interacting random walks on Z for which there is competition between repulsion at small scale and attraction at large scale. They proved that, for any positive integer L, if the relevant parameter belongs to a certain interval, then such random walks localize on L + 2 sites with positive probability. They also conjectured that it is the almost sure behaviour. We settle this conjecture partially, proving that the walk localizes on L + 2 or L + 3 sites almost surely, under the same assumptions.

Tue, 29 Oct 2013
00:00
Oxford-Man Institute

CANCELLED

CANCELLED
Mon, 29 Apr 2013

15:15 - 16:15
Oxford-Man Institute

Uniqueness of Signature

HORATIO BOEDIHARDJO
(University of Oxford)
Abstract

We relate the expected signature to the Fourier transform of n-point functions, first studied by O. Schramm, and subsequently
by J. Cardy and Simmon, D. Belyaev and J. Viklund. We also prove that the signatures determine the paths in the complement of a Chordal SLE null set. In the end, we will also discuss an idea on how to extend the uniqueness of signatures result by Hambly and Lyons (2006) to paths with finite 1<p<2variations.

Mon, 10 Jun 2013

15:45 - 16:45
Oxford-Man Institute

Learning from the past, predicting the statistics for the future, learning an evolving system using Rough Paths Theory.

NI HAO
(University of Oxford)
Abstract

In this talk, we consider the setting: a random realization of an evolving dynamical system, and explain how, using notions common in the theory of rough paths, such as the signature, and shuffle product, one can provide a new united approach to the fundamental problem of predicting the conditional distribution of the near future given the past. We will explain how the problem can be reduced to a linear regression and least squaresanalysis. The approach is clean and systematic and provides a clear gradation of finite dimensional approximations. The approach is also non-parametric and very general but still presents itself in computationally tractable and flexible restricted forms for concrete problems. Popular techniques in time series analysis such as GARCH can be seen to be restricted special cases of our approach but it is not clear they are always the best or most informative choices. Some numerical examples will be shown in order to compare our approach and standard time series models.

Subscribe to Oxford-Man Institute