Thu, 28 Jan 2010

13:15 - 14:15
SR1

Co-Higgs bundles II: fibrations and moduli spaces

Steven Rayan
(Oxford)
Abstract

After reviewing the salient details from last week's seminar, I will construct an explicit example of a spectral curve, using co-Higgs bundles of rank 2. The role of the spectral curve in understanding the moduli space will be made clear by appealing to the Hitchin fibration, and from there inferences (some of them very concrete) can be made about the structure of the moduli space. I will make some conjectures about the higher-dimensional picture, and also try to show how spectral varieties might live in that picture.

Thu, 21 Jan 2010

13:30 - 14:30
SR1

Co-Higgs bundles I: spectral curves

Steven Rayan
(Oxford)
Abstract

PLEASE NOTE THE CHANGE OF TIME FOR THIS WEEK: 13.30 instead of 12.

In the first of two talks, I will simultaneously introduce the notion of a co-Higgs vector bundle and the notion of the spectral curve associated to a compact Riemann surface equipped with a vector bundle and some extra data. I will try to put these ideas into both a historical context and a contemporary one. As we delve deeper, the emphasis will be on using spectral curves to better understand a particular moduli space.

Tue, 02 Mar 2010
16:00
SR1

Limit Groups

Benno Kuckuck
(Oxford)
Tue, 09 Feb 2010
16:00
SR1

The Alexander Polynomial

Jessica Banks
(Oxford)
Abstract

The Alexander polynomial of a link was the first link polynomial. We give some ways of defining this much-studied invariant, and derive some of its properties.

Tue, 02 Feb 2010
16:00
SR1

Outer Space

Richard Wade
(Oxford)
Abstract

We introduce Outer space, a contractible finite dimensional topological space on which the outer automorphism group of a free group acts 'nicely.' We will explain what 'nicely' is, and provide motivation with comparisons to symmetric spaces, analogous spaces associated to linear groups.

Tue, 19 Jan 2010
16:00
SR1

CAT(0) spaces and their boundaries

Dawid Kielak
(Oxford)
Abstract

We will look at CAT(0) spaces, their isometries and boundaries (defined through Busemann functions).

Subscribe to SR1