What a Higgs bundle is - and why you should care.
Abstract
This talk is a basic introduction to the wonderful world of Higgs bundles on a Riemann Surface, and their moduli space. We will only survey the basics of the theory focusing on the rich geometry of the moduli space of Higgs bundles, and the relation to moduli space of vector bundles. In the end we consider small applications of Higgs bundles. As this talk will be very basic we won't go into any new developments of the theory, but just mention the areas in which Higgs bundles are used today.
Introduction to Stacks by way of Vector Bundles on a Curve
Abstract
The aim of this talk is to introduce the notion of a stack, by considering in some detail the example of the the stack of vector bundles on a curve. One of the key areas of modern geometry is the study of moduli problems and associated moduli spaces, if they exist. For example, can we find a `fine moduli space' which parameterises isomorphism classes of vector bundles on a smooth curve and contains information about how such vector bundles vary in families? Quite often such a space doesn't exist in the category where we posed the original moduli problem, but we can enlarge our category and construct a `stack' which in a reasonable sense gives us the key properties of a fine moduli space we were looking for. This talk will be quite sketchy and won't even properly define a stack, but we hope to at least give some feel of how these objects are defined and why one might want to consider them.
From Borel to Yu (via Gromov): topology via geometric group theory
Abstract
The Borel conjecture is one of the most important (and difficult) conjectures in Topology. We explain how some weaker but highly related conjectures are being tackled through the coarse geometry of finitely generated groups.
Useful geometry and modular forms
Abstract
Algebraic geometry has become the standard language for many number theorists in recent decades. In this talk, we will define modular forms and related objects in the language of modern geometers, thereby giving a geometric motivation for their study. We will ask some naive questions from a purely geometric point of view about these objects, and try to answer them using standard geometric techniques. If time permits, we will discuss some rather deep consequences in number theory of our geometric excursion, and mention open problems in geometry whose solution would have profound consequences in number theory.
Once Upon a Time in Egypt: How the Story of Rational Points Began
Abstract
A nice bed-time story to end the term. It is often said that ideas like the group law or isogenies on elliptic curves were 'known to Fermat' or are 'found
in Diophantus', but this is rarely properly explained. I will discuss the first work on rational points on curves from the point of view of modern number
theory, asking if it really did anticipate the methods we use today.
14:30
The hitting time of rainbow connectivity two
Abstract
Rainbow connectivity is a new concept for measuring the connectivity of a graph which was introduced in 2008 by Chartrand, Johns, McKeon and Zhang. In a graph G with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of G so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G) of the graph G.
For any graph G, rc(G) >= diam(G). We will discuss rainbow connectivity in the random graph setting and present the result that for random graphs, rainbow connectivity 2 happens essentially at the same time as diameter 2. In fact, in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide
14:30
"Interpolation, box splines, and lattice points in zonotopes"
Abstract
Given a finite list of vectors X in $\R^d$, one can define the box spline $B_X$. Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X. The support of the box spline is a certain polytope called zonotope Z(X). We will show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form $p(D)B_X$ in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. The talk will focus on combinatorial aspects and all objects mentioned above will be defined. (arXiv:1211.1187)