Mon, 21 Nov 2011

16:00 - 17:00
SR1

P-adic L-functions and their special values

Netan Dogra
Abstract

This talk will begin by recalling classical facts about the relationship between values of the Riemann zeta function at negative integers and the arithmetic of cyclotomic extensions of the rational numbers. We will then consider a generalisation of this theory due to Iwasawa, and along the way we shall define the p-adic Riemann zeta function. Time permitting, I will also say something about what zeta values at positive integers have to do with the fundamental group of the projective line minus three points

Mon, 24 Oct 2011

16:00 - 17:00
SR1

Radix conversion for polynomials

Sebastian Pancratz
Abstract

We describe various approaches to the problem of expressing a polynomial $f(x) = \sum_{i=0}^{m} a_i x^i$ in terms of a different radix $r(x)$ as $f(x) = \sum_{j=0}^{n} b_j(x) r(x)^j$ with $0 \leq \deg(b_j) < \deg(r)$. Two approaches, the naive repeated division by $r(x)$ and the divide and conquer strategy, are well known. We also describe an approach based on the use of precomputed Newton inverses, which appears to offer significant practical improvements. A potential application of interest to number theorists is the fibration method for point counting, in current implementations of which the runtime is typically dominated by radix conversions.

Mon, 17 Oct 2011

16:00 - 17:00
SR1

On Maeda's conjecture

Jan Vonk
Abstract

The theory of modular forms owes in many ways lots of its results to the existence of the Hecke operators and their nice properties. However, even acting on modular forms of level 1, lots of basic questions remain unresolved. We will describe and prove some known properties of the Hecke operators, and state Maeda's conjecture. This conjecture, if true, has many deep consequences in the theory. In particular, we will indicate how it implies the nonvanishing of certain L-functions.

Tue, 24 Jan 2012

14:00 - 15:00
SR1

Shifted symplectic structures I

Bertrand Toen
(Montpelier)
Abstract

This is a report on a joint work (in progress) with Pantev, Vaquie and Vezzosi. After some

reminders on derived algebraic geometry, I will present the notion of shifted symplectic structures, as well as several basic examples. I will state existence results: mapping spaces towards a symplectic targets, classifying spaces of reductive groups, Lagrangian intersections, and use them to construct many examples of (derived) moduli spaces endowed with shifted symplectic forms. In a second part, I will explain what "Quantization" means in the shifted context. The general theory will be illustrated by the particular examples

of moduli of sheaves on oriented manifolds, in dimension 2, 3 and higher.

Mon, 10 Oct 2011

16:00 - 17:00
SR1

Small Gaps Between Primes

James Maynard
(Oxford)
Abstract

We discuss conjectures and results concerning small gaps between primes. In particular, we consider the work of Goldston, Pintz and Yildrim which shows that infinitely often there are gaps which have size an arbitrarily small proportion of the average gap.

Subscribe to SR1