Thu, 12 May 2022

15:30 - 16:30
L4

Representations of p-adic groups – with a twist

Jessica Fintzen
(Bonn University)
Abstract

The Langlands program is a far-reaching collection of conjectures that relate different areas of mathematics including number theory and representation theory. A fundamental problem on the representation theory side of the Langlands program is the construction of all (irreducible, smooth, complex or mod-$\ell$) representations of p-adic groups. I will provide an overview of our understanding of the representations of p-adic groups, with an emphasis on recent progress including joint work with Kaletha and Spice that introduces a twist to the story, and outline some applications.

Mon, 16 Nov 2020

16:00 - 17:00

Elliptic stochastic quantisation and supersymmetry

MASSIMILIANO GUBINELLI
(Bonn University)
Abstract

Stochastic quantisation is, broadly speaking, the use of a stochastic differential equation to construct a given probability distribution. Usually this refers to Markovian Langevin evolution with given invariant measure. However we will show that it is possible to construct other kind of equations (elliptic stochastic partial differential equations) whose solutions have prescribed marginals. This connection was discovered in the '80 by Parisi and Sourlas in the context of dimensional reduction of statistical field theories in random external fields. This purely probabilistic results has a proof which depends on a supersymmetric formulation of the problem, i.e. a formulation involving a non-commutative random field defined on a non-commutative space. This talk is based on joint work with S. Albeverio and F. C. de Vecchi.

 

Mon, 03 Feb 2020

15:45 - 16:45
L3

Rough semimartingales

PAVEL ZORIN-KRANICH
(Bonn University)
Abstract

 I will talk about optimal estimates for stochastic integrals
in the case when both rough paths and martingales play a role.

This is an ongoing joint work with Peter Friz (TU Berlin).

Mon, 03 Feb 2020

14:15 - 15:15
L3

Singular time changes, distributional valued Ricci bounds, and gradient estimates for reflected Brownian motion on non-convex domains

THEO STURM
(Bonn University)
Abstract

We derive generalized lower Ricci bounds in terms of signed measures. And we prove associated gradient estimates for the heat flow with Neumann boundary conditions on domains of metric measure spaces obtained through „convexification“ of the domains by means of subtle time changes. This improves upon previous results both in the case of non-convex domains and in the case of convex domains.
 

Mon, 30 Nov 2015

15:45 - 16:45
Oxford-Man Institute

TBC

KHALIL CHOUK
(Bonn University)
Abstract

TBC

Thu, 04 Dec 2014

12:00 - 13:00
L4

Higher regularity of the free boundary in the elliptic thin obstacle problem

Wenhui Shi
(Bonn University)
Abstract

In this talk, I will describe how to use the partial hodograph-Legendre transformation to show the analyticity of the free boundary in the elliptic thin obstacle problem. In particular, I will discuss the invertibility of this transformation and show that the resulting fully nonlinear PDE has a subelliptic structure. This is based on a joint work with Herbert Koch and Arshak Petrosyan.

Thu, 27 Nov 2014

12:00 - 13:00
L4

Interface motion in ill-posed diffusion equations

Michael Helmers
(Bonn University)
Abstract
We consider a discrete nonlinear diffusion equation with bistable nonlinearity. The formal continuum limit of this problem is an
ill-posed PDE, thus any limit dynamics might feature measure-valued solutions, phases interfaces, and hysteretic interface motion.
Based on numerical simulations, we first discuss the phenomena that occur for different types of initial. Then we focus on the case of
interfaces with non-trivial dynamics and study the rigorous passage to the limit for a piecewise affine nonlinearity.
Mon, 25 Nov 2013

15:45 - 16:45
Oxford-Man Institute

: Invariance Principle for the Random Conductance Model in a degenerate ergodic environment

Sebastian Andres
(Bonn University)
Abstract

Abstract:In this talk we consider a continuous time random walk $X$ on $\mathbb{Z}^d$ in an environment of random conductances taking values in $[0, \infty)$. Assuming that the law of the conductances is ergodic with respect to space shifts, we present a quenched invariance principle for $X$ under some moment conditions on the environment. The key result on the sublinearity of the corrector is obtained by Moser's iteration scheme. Under the same conditions we also present a local limit theorem. For the proof some Hölder regularity of the transition density is needed, which follows from a parabolic Harnack inequality. This is joint work with J.-D. Deuschel and M. Slowik.

Mon, 28 Oct 2013

14:15 - 15:15
Oxford-Man Institute

The boundary Harnack principle in fractal spaces

Janna Lier
(Bonn University)
Abstract

Abstract: The boundary Harnack principle states that the ratio of any two functions, which are positive and harmonic on a domain, is bounded near some part of the boundary where both functions vanish. A given domain may or may not have this property, depending on the geometry of its boundary and the underlying metric measure space.

In this talk, we will consider a scale-invariant boundary Harnack principle on domains that are inner uniform. This has applications such as two-sided bounds on the Dirichlet heat kernel, or the identification of the Martin boundary and the topological boundary for bounded inner uniform domains.

The inner uniformity provides a large class of domains which may have very rough boundary as long as there are no cusps. Aikawa and Ancona proved the scale-invariant boundary Harnack principle on inner uniform domains in Euclidean space. Gyrya and Saloff-Coste gave a proof in the setting of non-fractal strictly local Dirichlet spaces that satisfy a parabolic Harnack inequality.

I will present a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces that satisfy a parabolic Harnack inequality. This result applies to fractal spaces.

Subscribe to Bonn University