Tue, 27 Oct 2009

14:30 - 15:30
L3

The simple harmonic urn

Stanislav Volkov
(Bristol)
Abstract

The simple harmonic urn is a discrete-time stochastic process on $\mathbb Z^2$ approximating the phase portrait of the harmonic oscillator using very basic transitional probabilities on the lattice, incidentally related to the Eulerian numbers.

This urn which we consider can be viewed as a two-colour generalized Polya urn with negative-positive reinforcements, and in a sense it can be viewed as a “marriage” between the Friedman urn and the OK Corral model, where we restart the process each time it hits the horizontal axes by switching the colours of the balls. We show the transience of the process using various couplings with birth and death processes and renewal processes. It turns out that the simple harmonic urn is just barely transient, as a minor modification of the model makes it recurrent.

We also show links between this model and oriented percolation, as well as some other interesting processes.

This is joint work with E. Crane, N. Georgiou, R. Waters and A. Wade.

Mon, 16 Feb 2009
15:45
Oxford-Man Institute

Stochastic billiards in unbounded planar domains

Dr Andrew Wade
(Bristol)
Abstract
 Motivated by ideal gas models in the low density regime, we study a randomly reflecting particle travelling at constant speed in an unbounded domain in the plane with boundary satisfying a polynomial growth condition The growth rate of the domain, together with the reflection distribution, determine the asymptotic behaviour of the process. We give results on recurrence vs. transience, and on almost-sure-bounds for the particle including the rate of escape in the transient case. The proofs exploit a surprising relationship with Lamperti's problem of a process on the half-line with asymptotically zero drift. This is joint work with Mikhail Menshikov and Marina Vachkovskaia.

Thu, 04 Dec 2008
16:00
L3

Exceptional sets for Diophantine inequalities

Trevor Wooley
(Bristol)
Abstract

We report on work joint with Scott Parsell in which estimates are obtained for the set of real numbers not closely approximated by a given form with real coefficients. "Slim"

technology plays a role in obtaining the sharpest estimates.

Thu, 01 May 2008
16:30
DH 1st floor SR

"Some beyond-all-orders effects for localised structures"

Alan Champneys
(Bristol)
Abstract

This talk shall examine a range of problems where nonlinear waves or coherent structures are localised to some portion of a domain. In one spatial dimension, the problem reduces to finding homoclinic connections to equilibria. Two canonical problems emerge when higher-order spatial terms are considered (either via fourth-order operators or discreteness effects). One involves so-called snaking bifurcation diagrams where a fundamental state grows an internal patterned layer via an infinite sequence of fold bifurcations. The other involves the exact vanishing of oscillatory tails as a parameter is varied. It is shown how both problems arise from certain codimension-two limits where they can be captured by beyond-all-orders analysis. Dynamical systems methods can then be used to explain the kind of structures that emerge away from these degenerate points. Applications include moving discrete breathers in atomic lattices, discrete solitons in optical cavities, and theories for two-dimensional localised patterns using Swift-Hohenberg theory.

Mon, 04 Feb 2008
14:45
L3

Hydra groups

Tim Riley
(Bristol)
Abstract

I will describe a new family of groups exhibiting wild geometric and computational features in the context of their Conjugacy Problems. These features stem from manifestations of "Hercules versus the hydra battles."

This is joint work with Martin Bridson.

Mon, 21 Jan 2008
16:00
L3

Onsager's model of isotropic-nematic phase transition and its extensions

Valeriy Slastikov
(Bristol)
Abstract

We study Onsager’s model of isotropic–nematic phase transition with orientation parameter on a circle and sphere. We show the axial symmetry and derive explicit formulae for all critical points. Using the information about critical points we investigate a theory of orientational order in nematic liquid crystals which interpolates between several distinct approaches based on the director field (Oseen and Frank), order parameter tensor (Landau and de Gennes), and orientation probability density function (Onsager). As in density-functional theories, the free energy is a functional of spatially-dependent orientation distribution, however, the spatial variation effects are taken into account via phenomenological elastic terms rather than by means of a direct pair-correlation function. As a particular example we consider a simplified model with orientation parameter on a circle and illustrate its relation to complex Ginzburg-Landau theory.

Subscribe to Bristol