A new physical-space approach to decay for the wave equation with applications to black hole spacetimes
Monstrous moonshine and black holes
Abstract
\ \ In 1939 Rademacher derived a conditionally convergent series expression for the modular j-invariant, and used this expression---the first Rademacher sum---to verify its modular invariance. We may attach Rademacher sums to other discrete groups of isometries of the hyperbolic plane, and we may ask how the automorphy of the resulting functions reflects the geometry of the group in question.
\\
\ \ In the case of a group that defines a genus zero quotient of the hyperbolic plane the relationship is particularly striking. On the other hand, of the common features of the groups that arise in monstrous moonshine, the genus zero property is perhaps the most elusive. We will illustrate how Rademacher sums elucidate this phenomena by using them to formulate a characterization of the discrete groups of monstrous moonshine.
\\
\ \ A physical interpretation of the Rademacher sums comes into view when we consider black holes in the context of three dimensional quantum gravity. This observation, together with the application of Rademacher sums to moonshine, amounts to a new connection between moonshine, number theory and physics, and furnishes applications in all three fields.
Higher Order Tournaments
Abstract
Dynamical Vacuum Selection and Supersymmetry Breaking in String Theory
Abstract
14:30
Internal instabilities in ice-sheets: thermally-induced runaways and their interactions with glacier mechanics
14:30
Devil in the detail: imaging sub-glacial landforms using high-resolution radar surveys of the Antarctic ice sheet
Constant scalar curvature orbifold metrics and stability of orbifolds through embeddings in weighted projective spaces
Abstract
There is a conjectural relationship due to Yau-Tian-Donaldson between stability of projective manifolds and the existence of canonical Kahler metrics (e.g. Kahler-Einstein metrics). Embedding the projective manifold in a large projective space gives, on one hand, a Geometric Invariant Theory stability problem (by changing coordinates on the projective space) and, on the other, a notion of balanced metric which can be used to approximate the canonical Kahler metric in question. I shall discuss joint work with Richard Thomas that extends this framework to orbifolds with cyclic quotient singularities using embeddings in weighted projective space, and examples that show how several obstructions to constant scalar curvature orbifold metrics can be interpreted in terms of stability.
 
    