Tue, 20 May 2008
14:30
L3

"Turan/Erdos-Stone type problems involving coloured graphs"

Ed Marchant
(Cambridge)
Abstract
Let G be the union of a red graph R and a blue graph B where every edge of G is in R or B (or both R and B). We call such a graph 2-painted. Given 2-painted graphs G and H, we say that G contains a copy of H if we can find a subgraph of G which is isomorphic to H. Let 0

Tue, 27 May 2008
14:30
L3

“Cross-intersecting families of permutations and the Cameron-Ku conjecture"

David Ellis
(Cambridge)
Abstract

We call a family of permutations A in Sn 'intersecting' if any two permutations in A agree in at least one position. Deza and Frankl observed that an intersecting family of permutations has size at most (n-1)!; Cameron and Ku proved that equality is attained only by families of the form {σ in Sn: σ(i)=j} for i, j in [n].

We will sketch a proof of the following `stability' result: an intersecting family of permutations which has size at least (1-1/e + o(1))(n-1)! must be contained in {σ in Sn: σ(i)=j} for some i,j in [n]. This proves a conjecture of Cameron and Ku.

In order to tackle this we first use some representation theory and an eigenvalue argument to prove a conjecture of Leader concerning cross-intersecting families of permutations: if n >= 4 and A,B is a pair of cross-intersecting families in Sn, then |A||B|

Fri, 25 Apr 2008

12:00 - 13:00
L3

Metricity in projective geometry.

Dr Maciej Dunajski
(Cambridge)
Abstract

Cover a plane with curves, one curve through each point

in each direction. How can you tell whether these curves are

the geodesics of some metric?

This problem gives rise to a certain closed system of partial

differential equations and hence to obstructions to finding such a

metric. It has been an open problem for at least 80 years. Surprisingly

it is harder in two dimensions than in higher dimensions. I shall present

a solution obtained jointly with Robert Bryant and Mike Eastwood.

Mon, 09 Jun 2008
15:45
Oxford-Man Institute

Brownian Entropic Repulsion

Dr Nathanael Berestycki
(Cambridge)
Abstract

We consider one-dimensional Brownian motion conditioned (in a suitable

sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.5860... as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). I will also describe other conditionings of Brownian motion in which this principle of entropic repulsion manifests itself.

Joint work with Itai Benjamini.

Tue, 04 Mar 2008
13:30
L3

"Ramsey numbers of sparse graphs"

David Conlon
(Cambridge)
Abstract

Let d be a fixed natural number. There is a theorem, due to Chvátal, Rodl,

Szemerédi and Trotter (CRST), saying that the Ramsey number of any graph G

with maximum degree d and n vertices is at most c(d)n, that is it grows

linearly with the size of n. The original proof of this theorem uses the

regularity lemma and the resulting dependence of c on d is of tower-type.

This bound has been improved over the years to the stage where we are now

grappling with proving the correct dependency, believed to be an

exponential in d. Our first main result is a proof that this is indeed the

case if we assume additionally that G is bipartite, that is, for a

bipartite graph G with n vertices and maximum degree d, we have r(G)

Mon, 04 Feb 2008
13:30
L3

Ramsey numbers of sparse graphs

David Conlon
(Cambridge)
Abstract

Let d be a fixed natural number. There is a theorem, due to Chvátal, Rodl,

Szemerédi and Trotter (CRST), saying that the Ramsey number of any graph G

with maximum degree d and n vertices is at most c(d)n, that is it grows

linearly with the size of n. The original proof of this theorem uses the

regularity lemma and the resulting dependence of c on d is of tower-type.

This bound has been improved over the years to the stage where we are now

grappling with proving the correct dependency, believed to be an

exponential in d. Our first main result is a proof that this is indeed the

case if we assume additionally that G is bipartite, that is, for a

bipartite graph G with n vertices and maximum degree d, we have r(G)

Subscribe to Cambridge