Fri, 28 Feb 2014

16:00 - 17:00
L4

CALF: A period map for global derived stacks

Carmelo Di Natale
(Cambridge University)
Abstract

In the sixties Griffiths constructed a holomorphic map, known as the local period map, which relates the classification of smooth projective varieties to the associated Hodge structures. Fiorenza and Manetti have recently described it in terms of Schlessinger's deformation functors and, together with Martinengo, have started to look at it in the context of Derived Deformation Theory. In this talk we propose a rigorous way to lift such an extended version of Griffiths period map to a morphism of derived deformation functors and use this to construct a period morphism for global derived stacks.

Mon, 13 Jan 2014

12:20 - 12:45
L4

TBA

Shi-Wu Yang
(Cambridge University)
Mon, 29 Oct 2012

15:45 - 16:45
L3

Stable moduli spaces of high dimensional manifolds

Oscar Randal-Williams
(Cambridge University)
Abstract

I will discuss recent joint work with S. Galatius, in which we

generalise the Madsen--Weiss theorem from the case of surfaces to the

case of manifolds of higher even dimension (except 4). In the simplest

case, we study the topological group $\mathcal{D}_g$ of

diffeomorphisms of the manifold $\#^g S^n \times S^n$ which fix a

disc. We have two main results: firstly, a homology stability

theorem---analogous to Harer's stability theorem for the homology of

mapping class groups---which says that the homology groups

$H_i(B\mathcal{D}_g)$ are independent of $g$ for $2i \leq g-4$.

Secondly, an identification of the stable homology

$H_*(B\mathcal{D}_\infty)$ with the homology of a certain explicitly

described infinite loop space---analogous to the Madsen--Weiss

theorem. Together, these give an explicit calculation of the ring

$H^*(B\mathcal{D}_g;\mathbb{Q})$ in the stable range, as a polynomial

algebra on certain explicitly described generators.

Subscribe to Cambridge University