Tue, 27 Jan 2015
14:30
L6

Coalescence on the real line

Bhargav Narayanan
(Cambridge University)
Abstract

Given two probability distributions $P_R$ and $P_B$ on the positive reals with finite means, colour the real line alternately with red and blue intervals so that the lengths of the red intervals have distribution $P_R$, the lengths of the blue intervals have distribution $P_B$, and distinct intervals have independent lengths. Now iteratively update this colouring of the line by coalescing intervals: change the colour of any interval that is surrounded by longer intervals so that these three consecutive intervals subsequently form a single monochromatic interval. Say that a colour (either red or blue) `wins' if every point of the line is eventually of that colour. I will attempt to answer the following question: under what natural conditions on the distributions is one of the colours almost surely guaranteed to win?

Thu, 22 Jan 2015

12:00 - 13:00
L6

HYPOCOERCIVITY AND GEOMETRIC CONDITIONS IN KINETIC THEORY.

Harsha Hutridurga
(Cambridge University)
Abstract
We shall discuss the problem of the 'trend to equilibrium' for a 

degenerate kinetic linear Fokker-Planck equation. The linear equation is 

assumed to be degenerate on a subregion of non-zero Lebesgue measure in the 

physical space (i.e., the equation is just a transport equation with a 

Hamiltonian structure in the subregion). We shall give necessary and 

sufficient geometric condition on the region of degeneracy which guarantees 

the exponential decay of the semigroup generated by the degenerate kinetic 

equation towards a global Maxwellian equilibrium in a weighted Hilbert 

space. The approach is strongly influenced by C. Villani's strategy of 

'Hypocoercivity' from Kinetic theory and the 'Bardos-Lebeau-Rauch' 

geometric condition from Control theory. This is a joint work with Frederic 

Herau and Clement Mouhot.
Fri, 28 Feb 2014

16:00 - 17:00
L4

CALF: A period map for global derived stacks

Carmelo Di Natale
(Cambridge University)
Abstract

In the sixties Griffiths constructed a holomorphic map, known as the local period map, which relates the classification of smooth projective varieties to the associated Hodge structures. Fiorenza and Manetti have recently described it in terms of Schlessinger's deformation functors and, together with Martinengo, have started to look at it in the context of Derived Deformation Theory. In this talk we propose a rigorous way to lift such an extended version of Griffiths period map to a morphism of derived deformation functors and use this to construct a period morphism for global derived stacks.

Mon, 13 Jan 2014

12:20 - 12:45
L4

TBA

Shi-Wu Yang
(Cambridge University)
Mon, 29 Oct 2012

15:45 - 16:45
L3

Stable moduli spaces of high dimensional manifolds

Oscar Randal-Williams
(Cambridge University)
Abstract

I will discuss recent joint work with S. Galatius, in which we

generalise the Madsen--Weiss theorem from the case of surfaces to the

case of manifolds of higher even dimension (except 4). In the simplest

case, we study the topological group $\mathcal{D}_g$ of

diffeomorphisms of the manifold $\#^g S^n \times S^n$ which fix a

disc. We have two main results: firstly, a homology stability

theorem---analogous to Harer's stability theorem for the homology of

mapping class groups---which says that the homology groups

$H_i(B\mathcal{D}_g)$ are independent of $g$ for $2i \leq g-4$.

Secondly, an identification of the stable homology

$H_*(B\mathcal{D}_\infty)$ with the homology of a certain explicitly

described infinite loop space---analogous to the Madsen--Weiss

theorem. Together, these give an explicit calculation of the ring

$H^*(B\mathcal{D}_g;\mathbb{Q})$ in the stable range, as a polynomial

algebra on certain explicitly described generators.

Subscribe to Cambridge University