Tue, 20 Feb 2018

12:00 - 13:15
L4

Conformal field theory from affine Lie algebras at fractional levels

Simon Wood
(Cardiff)
Abstract

Some of the most studied examples of conformal field theories
include
the Wess-Zumino-Witten models. These are conformal field theories exhibiting
affine Lie algebra symmetry at non-negative integers levels. In this talk I
will
discuss conformal field theories exhibiting affine Lie algebra symmetry at
certain rational (hence fractional) levels whose structure is arguably even
more intricate than the structure of the non-negative integer levels,
provided
one is prepared to look beyond highest weight modules.

Thu, 19 Jan 2012

16:00 - 17:00
DH 1st floor SR

Inverse problems, wavelets, and linear viscoelasticity

Russell Davies
(Cardiff)
Abstract

It is an inherent premise in Boltzmann's formulation of linear viscoelasticity, that for shear deformations at constant pressure and constant temperature, every material has a unique continuous relaxation spectrum. This spectrum defines the memory kernel of the material. Only a few models for representing the continuous spectrum have been proposed, and these are entirely empirical in nature.

Extensive laboratory time is spent worldwide in collecting dynamic data from which the relaxation spectra of different materials may be inferred. In general the process involves the solution of one or more exponentially ill-posed inverse problems.

In this talk I shall present rigorous models for the continuous relaxation spectrum. These arise naturally from the theory of continuous wavelet transforms. In solving the inverse problem I shall discuss the role of sparsity as one means of regularization, but there is also a secondary regularization parameter which is linked, as always, to resolution. The topic of model-induced super-resolution is discussed, and I shall give numerical results for both synthetic and real experimental data.

The talk is based on joint work with Neil Goulding (Cardiff University).

Tue, 16 Jun 2009
12:00
L3

From the geometry of spacetime to the geometry of numbers

Stefan Hollands
(Cardiff)
Abstract

One of the major open challenges in general relativity is the classification of black hole solutions in higher dimensional theories. I will explain a recent result in this direction in the context of Kaluza-Klein spacetimes admitting a sufficient number N of commuting U(1)-symmetries. It turns out that the black holes in such a theory are characterized by the usual asymptotic charges, together with certain combinatorical data and moduli. The combinatorial data characterize the nature of the U(1)^N-action, and its analysis is closely related to properties of integer lattices and questions in the area of geometric number theory. I will also explain recent results on extremal black holes which show that such objects display remarkable ``symmetry enhancement'' properties
Subscribe to Cardiff