Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Wed, 14 Feb 2024
17:00
Lecture Theatre 1

Logging the World - Oliver Johnson

Oliver Johnson
(University of Bristol)
Further Information

During the pandemic, you may have seen graphs of data plotted on strange-looking (logarithmic) scales. Oliver will explain some of the basics and history of logarithms, and show why they are a natural tool to represent numbers ranging from COVID data to Instagram followers. In fact, we’ll see how logarithms can even help us understand information itself in a mathematical way.

Oliver Johnson is Professor of Information Theory in the School of Mathematics at the University of Bristol. His research involves randomness and uncertainty, and includes collaborations with engineers, biologists and computer scientists. During the pandemic he became a commentator on the daily COVID numbers, through his Twitter account and through appearances on Radio 4 and articles for the Spectator. He is the author of the book Numbercrunch (2023), which is designed to help a general audience understand the value of maths as a toolkit for making sense of the world.

Please email @email to register.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 06 March at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Banner for event
Wed, 01 Nov 2023

16:00 - 17:00
L6

Topology and dynamics on the space of subgroups

Pénélope Azuelos
(University of Bristol)
Abstract

The space of subgroups of a countable group is a compact topological space which encodes many of the properties of its non-free actions. We will discuss some approaches to studying the Cantor-Bendixson decomposition of this space in the context of hyperbolic groups and groups which act (nicely) on trees. We will also give some conditions under which the conjugation action on the perfect kernel is highly topologically transitive and see how this can be applied to find new examples of groups (including all virtually compact special groups) which admit faithful transitive amenable actions. This is joint work with Damien Gaboriau.

Thu, 16 Nov 2023
16:00
L5

90 years of pointwise ergodic theory

Ben Krause
(University of Bristol)
Abstract

This talk will cover the greatest hits of pointwise ergodic theory, beginning with Birkhoff's theorem, then Bourgain's work, and finishing with more modern directions.

Thu, 11 May 2023
16:00
L5

Parity of ranks of abelian surfaces

Celine Maistret
(University of Bristol)
Abstract
Let K be a number field and A/K an abelian surface. By the Mordell-Weil theorem, the group of K-rational points on A is finitely generated and as for elliptic curves, its rank is predicted by the Birch and Swinnerton-Dyer conjecture. A basic consequence of this conjecture is the parity conjecture: the sign of the functional equation of the L-series determines the parity of the rank of A/K.
Assuming finiteness of the Shafarevich-Tate group, we prove the parity conjecture for principally polarized abelian surfaces under suitable local constraints. Using a similar approach, we show that for two elliptic curves E_1 and E_2 over K with isomorphic 2-torsion, the parity conjecture is true for E_1 if and only if it is true for E_2.
In both cases, we prove analogous unconditional results for Selmer groups.
Tue, 31 Jan 2023

14:00 - 15:00
L4

Hypercontractivity on compact Lie groups, and some applications

David Ellis
(University of Bristol)
Abstract

We present two ways of obtaining hypercontractive inequalities for low-degree functions on compact Lie groups: one based on Ricci curvature bounds, the Bakry-Emery criterion and the representation theory of compact Lie groups, and another based on a (very different) probabilistic coupling approach. As applications we make progress on a question of Gowers concerning product-free subsets of the special unitary groups, and we also obtain 'mixing' inequalities for the special unitary groups, the special orthogonal groups, the spin groups and the compact symplectic groups. We expect that the latter inequalities will have applications in physics.

Based on joint work with Guy Kindler (HUJI), Noam Lifshitz (HUJI) and Dor Minzer (MIT).

Tue, 18 Oct 2022

15:30 - 16:30
L6

Universal characteristics of deep neural network loss surfaces from random matrix theory

Nick Baskerville
(University of Bristol)
Abstract

Neural networks are the most practically successful class of models in modern machine learning, but there are considerable gaps in the current theoretical understanding of their properties and success. Several authors have applied models and tools from random matrix theory to shed light on a variety of aspects of neural network theory, however the genuine applicability and relevance of these results is in question. Most works rely on modelling assumptions to reduce large, complex matrices (such as the Hessians of neural networks) to something close to a well-understood canonical RMT ensemble to which all the sophisticated machinery of RMT can be applied to yield insights and results. There is experimental work, however, that appears to contradict these assumptions. In this talk, we will explore what can be derived about neural networks starting from RMT assumptions that are much more general than considered by prior work. Our main results start from justifiable assumptions on the local statistics of neural network Hessians and make predictions about their spectra than we can test experimentally on real-world neural networks. Overall, we will argue that familiar ideas from RMT universality are at work in the background, producing practical consequences for modern deep neural networks.

 

Mon, 16 May 2022

16:00 - 17:00
C1

TBA

Emilia Alvarez
(University of Bristol)
Mon, 07 Feb 2022

12:45 - 13:45
Virtual

On systems of maximal quantum chaos

Mike Blake
(University of Bristol)
Further Information

Note the unusual time and date

Abstract

A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here I will discuss a proposal for a `hydrodynamic' origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. In particular I will discuss how in maximally chaotic systems there is a suppression of exponential growth in commutator squares of generic few-body operators. This suppression appears to indicate that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems.

Tue, 08 Feb 2022

15:30 - 16:30
Virtual

Non-intersecting Brownian motion and compact Lie groups

Alex Little
(University of Bristol)
Abstract

In many contexts a correspondence has been found between the classical compact groups and certain boundary conditions -- $U(n)$ corresponding to periodic, $USp(2n)$ corresponding to Dirichlet, $SO(2n)$ corresponding to Neumann and $SO(2n+1)$ corresponding to Zaremba. In this talk, I will try to elucidate this correspondence in Lie theoretic terms and in the process relate random matrix theory to Yang-Mills theory, free fermions and modular forms.

Subscribe to University of Bristol