Seminar series
Date
Tue, 16 May 2023
14:00
Location
C6
Speaker
Dr. Pablo Villegas
Organisation
Enrico Fermi Center for Study and Research

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate with the different network hierarchies complicating identifying coexisting mesoscopic structures and functional cores. We present a communicability analysis of effective information pathways throughout complex networks based on information diffusion to shed further light on these issues. This leads us to formulate a new renormalization group scheme for heterogeneous networks. The Renormalization Group is the cornerstone of the modern theory of universality and phase transitions, a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its network counterpart is particularly challenging due to correlations between intertwined scales. The Laplacian RG picture for complex networks defines both the supernodes concept à la Kadanoff, and the equivalent momentum space procedure à la Wilson for graphs.

Further Information

Pablo's main research interests concern complex systems in various fields, from biology to self-organized criticality theory, both from a theoretical and an applicative point of view.
As for the theoretical aspect, he contributed to the definition of mesoscopic models of the dynamics of the cortex, to the analysis of Griffiths Phases in complex networks. In term of applied works, he conducted an analysis of emerging patterns in tropical forests, such as those of Barro Colorado in Panama.

In this seminar, Pablo will present his recent work titled "Laplacian renormalization group for heterogeneous networks", published in Nature Physics earlier this year (link to the paper below).
 

Article: https://www.nature.com/articles/s41567-022-01866-8

 

Join Zoom Meeting
https://zoom.us/j/99314750082?pwd=L3kvZVh0TVJNRnk5Tm95YUpVODVRZz09

Meeting ID: 993 1475 0082
Passcode: 669691

 

Please contact us with feedback and comments about this page. Last updated on 16 May 2023 12:06.