Representations of filtered but non integer-graded infinite-dimensional Lie algebras
Abstract
This talk will be a case study on the recently discovered boundary Carrollian conformal algebra (BCCA) in theoretical physics. It is an infinite-dimensional subalgebra of an abelian extension of the Witt algebra. A striking feature of this is that it is not integer graded; this already puts us in a rather novel setting, since infinite-dimensional Lie algebras almost exclusively appear with integer grading in physics. But this means that there is new ground to be broken in this direction of research. In this talk, I will present some very early results from our attempt at studying the representations of the BCCA. Any thoughts and comments are very welcome as they could be immensely helpful for us to navigate these unfamiliar waters!