Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Thu, 20 Nov 2025

15:00 - 16:00
L2

Global and local regression: a signature approach with applications

Prof. Christian Bayer
(Weierstrass Institute Berlin)
Abstract

The path signature is a powerful tool for solving regression problems on path space, i.e., for computing conditional expectations $\mathbb{E}[Y | X]$ when the random variable $X$ is a stochastic process -- or a time-series. We provide new theoretical convergence guarantees for two different, complementary approaches to regression using signature methods. In the context of global regression, we show that linear functionals of the robust signature are universal in the $L^p$ sense in a wide class of examples. In addition, we present a local regression method based on signature semi-metrics, and show universality as well as rates of convergence. 

 

Based on joint works with Davit Gogolashvili, Luca Pelizzari, and John Schoenmakers.

 

 

Please note: The MCF seminar usually takes place on Thursdays from 16:00 to 17:00 in L5. However, for this week, the timing will be changed to 15:00 to 16:00.

Thu, 27 Nov 2025

15:30 - 16:30
L5

TBA

Yadh Hafsi
(OMI visitor)
Abstract

TBA

Thu, 04 Dec 2025

15:30 - 16:30
L5

TBA

Boris Baros
((Mathematical Institute University of Oxford))
Abstract

TBA

Mon, 02 Feb 2026

15:30 - 16:30
L3

Mean field games without rational expectations

Benjamin MOLL
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.