The value of information flows in the stock market - joint with Hai Duong
Abstract
Forthcoming events in this series
We develop a general framework for pathwise stochastic integration that extends Follmer's classical approach beyond gradient-type integrands and standard left-point Riemann sums and provides pathwise counterparts of Ito, Stratonovich, and backward Ito integration. More precisely, for a continuous path admitting both quadratic variation and Levy area along a fixed sequence of partitions, we define pathwise stochastic integrals as limits of general Riemann sums and prove that they coincide with integrals defined with respect to suitable rough paths. Furthermore, we identify necessary and sufficient conditions under which the quadratic variation and the Levy area of a continuous path are invariant with respect to the choice of partition sequences.
We study dynamic -player noncooperative games called -potential games, where the change of a player’s objective function upon her unilateral deviation from her strategy is equal to the change of an -potential function up to an error . Analogous to the static potential game (which corresponds to ), the -potential game framework is shown to reduce the challenging task of finding -Nash equilibria for a dynamic game to minimizing the -potential function. Moreover, an analytical characterization of -potential functions is established, with represented in terms of the magnitude of the asymmetry of objective functions’ second-order derivatives. For stochastic differential games in which the state dynamic is a controlled diffusion, is characterized in terms of the number of players, the choice of admissible strategies, and the intensity of interactions and the level of heterogeneity among players. Two classes of stochastic differential games, namely, distributed games and games with mean field interactions, are analyzed to highlight the dependence of on general game characteristics that are beyond the mean field paradigm, which focuses on the limit of with homogeneous players. To analyze the -NE (Nash equilibrium), the associated optimization problem is embedded into a conditional McKean–Vlasov control problem. A verification theorem is established to construct -NE based on solutions to an infinite-dimensional Hamilton–Jacobi–Bellman equation, which is reduced to a system of ordinary differential equations for linear-quadratic games.
Understanding the relationship between expectation and price is central to applications of mathematical finance, including algorithmic trading, derivative pricing and hedging, and the modelling of margin and capital. In this presentation, the link is established via dynamic entropic risk optimisation, which is promoted for its convenient integration into standard pricing methodologies and for its ability to quantify and analyse model risk. As an example of the versatility of entropic pricing, discrete models with classical and quantum information are compared, with studies that demonstrate the effectiveness of quantum decorrelation for model fitting.
We introduce a non-probabilistic, path-by-path framework for continuous-time, path-dependent portfolio allocation. Extending the self-financing concept recently introduced in Chiu & Cont (2023), we characterize self-financing portfolio allocation strategies through a path-dependent PDE and provide explicit solutions for the portfolio value in generic markets, including price paths that are not necessarily continuous or exhibit variation of any order.
As an application, we extend an aggregating algorithm of Vovk and the universal algorithm of Cover to continuous-time meta-algorithms that combine multiple strategies into a single strategy, respectively tracking the best individual and the best convex combination of strategies. This work extends Cover’s theorem to continuous-time without probability.
An explicit first-order drift-randomized Milstein scheme for a regime switching stochastic differential equation is proposed and its bi-stability and rate of strong convergence are investigated for a non-differentiable drift coefficient. Precisely, drift is Lipschitz continuous while diffusion along with its derivative is Lipschitz continuous. Further, we explore the significance of evaluating Brownian trajectories at every switching time of the underlying Markov chain in achieving the convergence rate 1 of the proposed scheme. In this context, possible variants of the scheme, namely modified randomized and reduced randomized schemes, are considered and their convergence rates are shown to be 1/2. Numerical experiments are performed to illustrate the convergence rates of these schemes along with their corresponding non-randomized versions. Further, it is illustrated that the half-order non-randomized reduced and modified schemes outperform the classical Euler scheme.
We study a multi-agent setting in which brokers transact with an informed trader. Through a sequential Stackelberg-type game, brokers manage trading costs and adverse selection with an informed trader. In particular, supplying liquidity to the informed traders allows the brokers to speculate based on the flow information. They simultaneously attempt to minimize inventory risk and trading costs with the lit market based on the informed order flow, also known as the internalization-externalization strategy. We solve in closed form for the trading strategy that the informed trader uses with each broker and propose a system of equations which classify the equilibrium strategies of the brokers. By solving these equations numerically we may study the resulting strategies in equilibrium. Finally, we formulate a competitive game between brokers in order to determine the liquidity prices subject to precommitment supplied to the informed trader and provide a numerical example in which the resulting equilibrium is not Pareto efficient.
Please join us for refreshments outside the lecture room from 15:30.
In this talk, I will introduce a dynamic model of a banking network in which the value of interbank obligations is continuously adjusted to reflect counterparty default risk. An interesting feature of the model is that the credit value adjustments increase volatility during downturns, leading to endogenous distress contagion. The counterparty default risk can be computed backwards in time from the obligations' maturity date, leading to a specification of the model in terms of a forward-backward stochastic differential equation (FBSDE), coupled through the banks' default times. The singular nature of this coupling, makes a probabilistic analysis of the FBSDE challenging. So, instead, we derive a characterisation of the default probabilities through a cascade of partial differential equations (PDE). Each PDE represents a configuration with a different number of defaulted banks and has a free boundary that coincides with the banks' default thresholds. We establish classical well-posedness of this PDE cascade, from which we derive existence and uniqueness of the FBSDE.
Rank-based models for equity markets are reduced-form models where the asset dynamics depend on the rank that asset occupies in the investment universe. Such models are able to capture certain stylized macroscopic properties of equity markets, such as stability of the capital distribution curve and collision rates of stock rank switches. However, when calibrated to real equity data the models possess undesirable features such as an "Atlas stock" effect; namely the smallest security has an unrealistically large drift. Recently, Campbell and Wong (2024) identified that listings and delistings (i.e. entrances and exists) of securities in the market are important drivers for the stability of the capital distribution curve. In this work we develop a framework for ranked-based models with listings and delistings and calibrate them to data. By incorporating listings and delistings the calibration procedure no longer leads to an "Atlas stock" behaviour. Moreover, by studying an appropriate "local model", focusing on a specific target rank, we are able to connect collisions rates with a notion of particle density, which is more stable and easier to estimate from data than the collision rates. The calibration results are supported by novel theoretical developments such as a new master formula for functional generation of portfolios in this setting. This talk is based on joint work in progress with Martin Larsson and Licheng Zhang.
Please join us outside the lecture room from 15:30 for refreshments.
We investigate the strong data processing inequalities of contractive Markov Kernels under a specific f-divergence, namely the E-gamma-divergence. More specifically, we characterize an upper bound on the E-gamma-divergence between PK and QK, the output distributions of contractive Markov kernel K, in terms of the E-gamma-divergence between the corresponding input distributions P and Q. Interestingly, the tightest such upper bound turns out to have a non-multiplicative form. We apply our results to derive new bounds for the local differential privacy guarantees offered by the sequential application of a privacy mechanism to data and we demonstrate that our framework unifies the analysis of mixing times for contractive Markov kernels.
This paper shows that a simple sale contract with a collection of options implements the full-information first-best allocation in a variety of continuous-time dynamic adverse selection settings with news. Our model includes as special cases most models in the literature. The implementation result holds regardless of whether news is public (i.e., contractible) or privately observed by the buyer, and it does not require deep pockets on either side of the market. It is an implication of our implementation result that, irrespective of the assumptions on the game played, no agent waits for news to trade in such models. The options here do not play a hedging role and are, thus, not priced using a no-arbitrage argument. Rather, they are priced using a game-theoretic approach.
We characterise the solutions to a continuous-time optimal liquidity provision problem in a market populated by informed and uninformed traders. In our model, the asset price exhibits fads -- these are short-term deviations from the fundamental value of the asset. Conditional on the value of the fad, we model how informed traders and uninformed traders arrive in the market. The market maker knows of the two groups of traders but only observes the anonymous order arrivals. We study both, the complete information and the partial information versions of the control problem faced by the market maker. In such frameworks, we characterise the value of information, and we find the price of liquidity as a function of the proportion of informed traders in the market. Lastly, for the partial information setup, we explore how to go beyond the Kalman-Bucy filter to extract information about the fad from the market arrivals.
Please join us for refreshments outside the lecture room from 15:30.
We investigate a stochastic differential game in which a major player has a private information (the knowledge of a random variable), which she discloses through her control to a population of small players playing in a Nash Mean Field Game equilibrium. The major player’s cost depends on the distribution of the population, while the cost of the population depends on the random variable known by the major player. We show that the game has a relaxed solution and that the optimal control of the major player is approximatively optimal in games with a large but finite number of small players. Joint work with Pierre Cardaliaguet and Catherine Rainer.
Please join us for refreshments outside the lecture room from 15:30.
Please join us for refreshments outside the lecture room from 15:30.
In this talk we study the numerical approximation of the jump-diffusion McKean--Vlasov SDEs with super-linearly growing drift, diffusion and jump-coefficient. In the first step, we derive the corresponding interacting particle system and define a Milstein-type approximation for this. Making use of the propagation of chaos result and investigating the error of the Milstein-type scheme we provide convergence results for the scheme. In a second step, we discuss potential simplifications of the numerical approximation scheme for the direct approximation of the jump-diffusion McKean--Vlasov SDE. Lastly, we present the results of our numerical simulations.
Please join us for refreshments outside the lecture room from 15:30.
We frame dynamic persuasion in a partial observation stochastic control game with an ergodic criterion. The receiver controls the dynamics of a multidimensional unobserved state process. Information is provided to the receiver through a device designed by the sender that generates the observation process.
The commitment of the sender is enforced and an exogenous information process outside the control of the sender is allowed. We develop this approach in the case where all dynamics are linear and the preferences of the receiver are linear-quadratic.
We prove a verification theorem for the existence and uniqueness of the solution of the HJB equation satisfied by the receiver’s value function. An extension to the case of persuasion of a mean field of interacting receivers is also provided. We illustrate this approach in two applications: the provision of information to electricity consumers with a smart meter designed by an electricity producer; the information provided by carbon footprint accounting rules to companies engaged in a best-in-class emissions reduction effort. In the first application, we link the benefits of information provision to the mispricing of electricity production. In the latter, we show that when firms declare a high level of best-in-class target, the information provided by stringent accounting rules offsets the Nash equilibrium effect that leads firms to increase pollution to make their target easier to achieve.
This is a joint work with Prof. René Aïd, Prof. Giorgia Callegaro and Prof. Luciano Campi.
This study introduces a novel suite of historical large language models (LLMs) pre-trained specifically for accounting and finance, utilising a diverse set of major textual resources. The models are unique in that they are year-specific, spanning from 2007 to 2023, effectively eliminating look-ahead bias, a limitation present in other LLMs. Empirical analysis reveals that, in trading, these specialised models outperform much larger models, including the state-of-the-art LLaMA 1, 2, and 3, which are approximately 50 times their size. The findings are further validated through a range of robustness checks, confirming the superior performance of these LLMs.
The important problem of backtesting financial models over long horizons inevitably leads to overlapping returns, giving rise to correlated samples. We propose a new method of dealing with this problem by decorrelation and show how this increases the discriminatory power of the resulting tests.
About the speaker
Nikolai Nowaczyk is a Risk Management & AI consultant who has advised multiple institutional clients in projects around counterparty credit risk and xVA as well as data science and machine learning.
Nikolai holds a PhD in mathematics from the University of Regensburg and has been an Academic Visitor at Imperial College London.
Registration for in-person attendance is required in advance.
Please join us for refreshments outside the lecture room from 15:30.
Please join us for reshments outside the lecture room from 1530.
We extend stochastic optimal transport to path-dependent settings. The problem is to find a semimartingale measure that satisfies general path-dependent constraints, while minimising a cost function on the drift and diffusion coefficients. Duality is established and expressed via non-linear path-dependent partial differential equations (PPDEs). The technique has applications in volatility calibration, including the calibration of path-dependent derivatives, LSV models, and joint SPX-VIX models. It produces a non-parametric volatility model that localises to the features of the derivatives. Another application is in the robust pricing and hedging of American options in continuous time. This is achieved by establishing duality in a space enlarged by the stopping decisions, and showing that the extremal points of martingale measures on the enlarged space are in fact martingale measures on the original space coupled with stopping times.
Please register via our TicketSource page.
Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
Abstract
This paper parsimoniously generalizes the VIX variance index by constructing model-free factor portfolios that replicate skewness and higher moments. It then develops an infinite series to replicate option payoffs in terms of the stock, bond, and factor returns. The truncated series offers new formulas that generalize the Black-Scholes formula to hedge variance and skewness risk.
About the speaker
Steve Heston is Professor of Finance at the University of Maryland. He is known for his pioneering work on the pricing of options with stochastic volatility.
Steve graduated with a double major in Mathematics and Economics from the University of Maryland, College Park in 1983, an MBA in 1985 followed by a PhD in Finance in 1990. He has held previous faculty positions at Yale, Columbia, Washington University, and the University of Auckland in New Zealand and worked in the private sector with Goldman Sachs in Fixed Income Arbitrage and in Asset Management Quantitative Equities.
Please join us for refreshments outside the lecture room from 1530.
Registration for the talk is free but required.
A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).
Please join us for reshments outside the lecture room from 1530.
In this seminar we introduce a portfolio optimisation framework, in which the use of rough path signatures (Lyons, 1998) provides a novel method of incorporating path-dependencies in the joint signal-asset dynamics, naturally extending traditional factor models, while keeping the resulting formulas lightweight, tractable and easily interpretable. Specifically, we achieve this by representing a trading strategy as a linear functional applied to the signature of a path (which we refer to as “Signature Trading” or “Sig-Trading”). This allows the modeller to efficiently encode the evolution of past time-series observations into the optimisation problem. In particular, we derive a concise formulation of the dynamic mean-variance criterion alongside an explicit solution in our setting, which naturally incorporates a drawdown control in the optimal strategy over a finite time horizon. Secondly, we draw parallels between classical portfolio stategies and Sig-Trading strategies and explain how the latter leads to a pathwise extension of the classical setting via the “Signature Efficient Frontier”. Finally, we give explicit examples when trading under an exogenous signal as well as examples for momentum and pair-trading strategies, demonstrated both on synthetic and market data. Our framework combines the best of both worlds between classical theory (whose appeal lies in clear and concise formulae) and between modern, flexible data-driven methods (usually represented by ML approaches) that can handle more realistic datasets. The advantage of the added flexibility of the latter is that one can bypass common issues such as the accumulation of heteroskedastic and asymmetric residuals during the optimisation phase. Overall, Sig-Trading combines the flexibility of data-driven methods without compromising on the clarity of the classical theory and our presented results provide a compelling toolbox that yields superior results for a large class of trading strategies.
This is based on works with Blanka Horvath and Magnus Wiese.
Please join us for reshments outside the lecture room from 1530.
We show the super-hedging duality for multi-action options which generalise American options to a larger space of actions (possibly uncountable) than {stop, continue}. We put ourselves in the framework of Bouchard & Nutz model relying on analytic measurable selection theorem. Finally we consider information delay on the action component of the product space. Information delay is expressed as a possibility to look into the future in the dual formulation. This is a joint work with Ivan Guo, Shidan Liu and Zhou Zhou.
Please join us for reshments outside the lecture room from 1530.
We consider the reinforcement learning problem of controlling an unknown dynamical system to maximise the long-term average reward along a single trajectory. Most of the literature considers system interactions that occur in discrete time and discrete state-action spaces. Although this standpoint is suitable for games, it is often inadequate for systems in which interactions occur at a high frequency, if not in continuous time, or those whose state spaces are large if not inherently continuous. Perhaps the only exception is the linear quadratic framework for which results exist both in discrete and continuous time. However, its ability to handle continuous states comes with the drawback of a rigid dynamic and reward structure.
This work aims to overcome these shortcomings by modelling interaction times with a Poisson clock of frequency $\varepsilon^{-1}$ which captures arbitrary time scales from discrete ($\varepsilon=1$) to continuous time ($\varepsilon\downarrow0$). In addition, we consider a generic reward function and model the state dynamics according to a jump process with an arbitrary transition kernel on $\mathbb{R}^d$. We show that the celebrated optimism protocol applies when the sub-tasks (learning and planning) can be performed effectively. We tackle learning by extending the eluder dimension framework and propose an approximate planning method based on a diffusive limit ($\varepsilon\downarrow0$) approximation of the jump process.
Overall, our algorithm enjoys a regret of order $\tilde{\mathcal{O}}(\sqrt{T})$ or $\tilde{\mathcal{O}}(\varepsilon^{1/2} T+\sqrt{T})$ with the approximate planning. As the frequency of interactions blows up, the approximation error $\varepsilon^{1/2} T$ vanishes, showing that $\tilde{\mathcal{O}}(\sqrt{T})$ is attainable in near-continuous time.
Registration is free but required. Register Here.
Investors fear that surging volumes in short-term, especially same-day expiry (0DTE), options can destabilize markets by propagating large price jumps. Contrary to the intuition that 0DTE sellers predominantly generate delta-hedging flows that aggravate market moves, high open interest gamma in 0DTEs does not propagate past volatility. 0DTEs and underlying markets have become more integrated over time, leading to a marginally stronger link between the index volatility and 0DTE trading. Nonetheless, intraday 0DTE trading volume shocks do not amplify recent past index returns, inconsistent with the view that 0DTEs market growth intensifies market fragility.
About the speaker
Grigory Vilkov, Professor of Finance at the Frankfurt School of Finance and Management, holds an MBA from the University of Rochester and a Ph.D. from INSEAD, with further qualifications from Goethe University Frankfurt. He has been a professor at both Goethe University and the University of Mannheim.
His academic work focused on improving long-term portfolio strategies by building better expectations of risks, returns, and their dynamics. He is known for practical innovations in finance, such as developing forward-looking betas marketed by IvyDB OptionMetrics, establishing implied skewness and generalized lower bounds as cross-sectional stock characteristics, and creating measures for climate change exposure from earnings calls. His current research encompasses factor dispersions, factor and sector rotation, asset allocation with implied data, and machine learning in options analysis.
Please join us for refreshments outside L3 from 1530.
Predicting real-world phenomena often requires an understanding of their causal relations, not just their statistical associations. I will begin this talk with a brief introduction to the field of causal inference in the classical case of structural causal models over directed acyclic graphs, and causal discovery for static variables. Introducing the temporal dimension results in several interesting complications which are not well handled by the classical framework. The main component of a constraint-based causal discovery procedure is a statistical hypothesis test of conditional independence (CI). We develop such a test for stochastic processes, by leveraging recent advances in signature kernels. Then, we develop constraint-based causal discovery algorithms for acyclic stochastic dynamical systems (allowing for loops) that leverage temporal information to recover the entire directed graph. Assuming faithfulness and a CI oracle, our algorithm is sound and complete. We demonstrate strictly superior performance of our proposed CI test compared to existing approaches on path-space when tested on synthetic data generated from SDEs, and discuss preliminary applications to finance. This talk is based on joint work with Georg Manten, Cecilia Casolo, Søren Wengel Mogensen, Cristopher Salvi and Niki Kilbertus: https://arxiv.org/abs/2402.18477 .
Please join us for refreshments outside L3 from 1530.
Optimal transport (OT) proves to be a powerful tool for non-parametric calibration: it allows us to take a favourite (non-calibrated) model and project it onto the space of all calibrated (martingale) models. The dual side of the problem leads to an HJB equation and a numerical algorithm to solve the projection. However, in general, this process is costly and leads to spiky vol surfaces. We are interested in special cases where the projection can be obtained semi-analytically. This leads us to the martingale equivalent of the seminal fluid-dynamics interpretation of the optimal transport (OT) problem developed by Benamou and Brenier. Specifically, given marginals, we look for the martingale which is the closest to a given archetypical model. If our archetype is the arithmetic Brownian motion, this gives the stretched Brownian motion (or the Bass martingale), studied previously by Backhoff-Veraguas, Beiglbock, Huesmann and Kallblad (and many others). Here we consider the financially more pertinent case of Black-Scholes (geometric BM) reference and show it can also be solved explicitly. In both cases, fast numerical algorithms are available.
Based on joint works with Julio Backhoff, Benjamin Joseph and Gregoire Leoper.
This talk reports a work in progress. It will be done on a board.
We build statistical models to describe how market participants choose the direction, price, and volume of orders. Our dataset, which spans sixteen weeks for four shares traded in Euronext Amsterdam, contains all messages sent to the exchange and includes algorithm identification and member identification. We obtain reliable out-of-sample predictions and report the top features that predict direction, price, and volume of orders sent to the exchange. The coefficients from the fitted models are used to cluster trading behaviour and we find that algorithms registered as Liquidity Providers exhibit the widest range of trading behaviour among dealing capacities. In particular, for the most liquid share in our study, we identify three types of behaviour that we call (i) directional trading, (ii) opportunistic trading, and (iii) market making, and we find that around one third of Liquidity Providers behave as market markers.
This is based on work with Álvaro Cartea, Saad Labyad, Leandro Sánchez-Betancourt and Leon van Veldhuijzen. View the working paper here.
Attendance is free of charge but requires prior online registration. To register please click here.
Please join us for refreshments from 15:30 outside L3.
Join us for refreshments from 330 outside L3.
Diffusion models, which transform noise into new data instances by reversing a Markov diffusion process, have become a cornerstone in modern generative models. A key component of these models is to learn the score function through score matching. While the practical power of diffusion models has now been widely recognized, the theoretical developments remain far from mature. Notably, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. In this talk, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models and the accuracy of score estimation. Our analysis covers both the optimization and the generalization aspects of the learning procedure, which also builds a novel connection to supervised learning and neural tangent kernels.
This is based on joint work with Yinbin Han and Meisam Razaviyayn (USC).
Join us for refreshments from 330 outside L3.
Causal optimal transport and the related adapted Wasserstein distance have recently been popularized as a more appropriate alternative to the classical Wasserstein distance in the context of stochastic analysis and mathematical finance. In this talk, we establish some interesting consequences of causality for transports on the space of continuous functions between the laws of stochastic differential equations.
We first characterize bicausal transport plans and maps between the laws of stochastic differential equations. As an application, we are able to provide necessary and sufficient conditions for bicausal transport plans to be induced by bi-causal maps. Analogous to the classical case, we show that bicausal Monge transports are dense in the set of bicausal couplings between laws of SDEs with unique strong solutions and regular coefficients.
This is a joint work with Rama Cont.
Join us for refreshments from 330 outside L3.
We introduce a methodology based on Multireference Alignment (MRA) for lead-lag detection in multivariate time series, and demonstrate its applicability in developing trading strategies. Specifically designed for low signal-to-noise ratio (SNR) scenarios, our approach estimates denoised latent signals from a set of time series. We also investigate the impact of clustering the time series on the recovery of latent signals. We demonstrate that our lead-lag detection module outperforms commonly employed cross-correlation-based methods. Furthermore, we devise a cross-sectional trading strategy that capitalizes on the lead-lag relationships uncovered by our approach and attains significant economic benefits. Promising backtesting results on daily equity returns illustrate the potential of our method in quantitative finance and suggest avenues for future research.
This event is free but requires prior registration. To register, please click here.
Abstract
In the contemporary AI landscape, Large Language Models (LLMs) stand out as game-changers. They redefine not only how we interact with computers via natural language but also how we identify and extract insights from vast, complex datasets. This presentation delves into the nuances of training and customizing LLMs, with a focus on their applications to quantitative finance.
About the speaker
Ioana Boier is a senior principal solutions architect at Nvidia. Her background is in Quantitative Finance and Computer Science. Prior to joining Nvidia, she was the Head of Quantitative Portfolio Solutions at Alphadyne Asset Management, and led research teams at Citadel LLC, BNP Paribas, and IBM T.J. Watson Research. She has a Ph.D. in Computer Science from Purdue University and is the author of over 30 peer-reviewed publications, 15 patents, and the winner of several awards for applied research delivered into products.
View her LinkedIn page
Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
In this talk, we investigate distributionally robust optimization (DRO) in a dynamic context. We consider a general penalized DRO problem with a causal transport-type penalization. Such a penalization naturally captures the information flow generated by the models. We derive a tractable dynamic duality formula under a measure theoretic framework. Furthermore, we apply the duality to distributionally robust average value-at-risk and stochastic control problems.
We propose a novel framework for exploring weak and $L_2$ generalization errors of algorithms through the lens of differential calculus on the space of probability measures. Specifically, we consider the KL-regularized empirical risk minimization problem and establish generic conditions under which the generalization error convergence rate, when training on a sample of size $n$ , is $\matcal{O}(1/n)$. In the context of supervised learning with a one-hidden layer neural network in the mean-field regime, these conditions are reflected in suitable integrability and regularity assumptions on the loss and activation functions.
Popular automated market makers (AMMs) use constant function markets (CFMs) to clear the demand and supply in the pool of liquidity. A key drawback in the implementation of CFMs is that liquidity providers (LPs) are currently providing liquidity at a loss, on average. In this paper, we propose two new designs for decentralised trading venues, the arithmetic liquidity pool (ALP) and the geometric liquidity pool (GLP). In both pools, LPs choose impact functions that determine how liquidity taking orders impact the marginal exchange rate of the pool, and set the price of liquidity in the form of quotes around the marginal rate. The impact functions and the quotes determine the dynamics of the marginal rate and the price of liquidity. We show that CFMs are a subset of ALP; specifically, given a trading function of a CFM, there are impact functions and quotes in the ALP that replicate the marginal rate dynamics and the execution costs in the CFM. For the ALP and GLP, we propose an optimal liquidity provision strategy where the price of liquidity maximises the LP's expected profit and the strategy depends on the LP's (i) tolerance to inventory risk and (ii) views on the demand for liquidity. Our strategies admit closed-form solutions and are computationally efficient. We show that the price of liquidity in CFMs is suboptimal in the ALP. Also, we give conditions on the impact functions and the liquidity provision strategy to prevent arbitrages from rountrip trades. Finally, we use transaction data from Binance and Uniswap v3 to show that liquidity provision is not a loss-leading activity in the ALP.
This seminar is part of our Frontiers in Quantitative Finance. Attendance is free of charge but requires prior online registration.
Abstract
Empirical studies consistently find that the price impact of large trades approximately follows a nonlinear power law. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, if the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to the numerical Viterbi algorithm of Kolm and Ritter (2014) run at very high accuracy. The effective quadratic cost depends on the portfolio risk, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.
Read more on this work here.
We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset, and then designs strategies to liquidate a risky asset while creating transient price impact. We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders. We quantify the accuracy of the estimated propagator using a metric which depends explicitly on the dataset. We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality due to spurious correlation between the trading strategy and the estimator. By adopting an offline reinforcement learning approach, we introduce a pessimistic loss functional taking the uncertainty of the estimated propagator into account, with an optimiser which eliminates the spurious correlation, and derive an asymptotically optimal bound on the execution costs even without precise information on the true propagator. Numerical experiments are included to demonstrate the effectiveness of the proposed propagator estimator and the pessimistic trading strategy.
Central clearing counterparty houses (CCPs) play a fundamental role in mitigating the counterparty risk for exchange traded options. CCPs cover for possible losses during the liquidation of a defaulting member's portfolio by collecting initial margins from their members. In this article we analyze the current state of the art in the industry for computing initial margins for options, whose core component is generally based on a VaR or Expected Shortfall risk measure. We derive an approximation formula for the VaR at short horizons in a model-free setting. This innovating formula has promising features and behaves in a much more satisfactory way than the classical Filtered Historical Simulation-based VaR in our numerical experiments. In addition, we consider the neural-SDE model for normalized call prices proposed by [Cohen et al., arXiv:2202.07148, 2022] and obtain a quasi-explicit formula for the VaR and a closed formula for the short term VaR in this model, due to its conditional affine structure.
We propose a method to detect linear and nonlinear lead-lag relationships in stock returns. Our approach uses pairwise Lévy-area and cross-correlation of returns to rank the assets from leaders to followers. We use the rankings to construct a portfolio that longs or shorts the followers based on the previous returns of the leaders, and the stocks are ranked every time the portfolio is rebalanced. The portfolio also takes an offsetting position on the SPY ETF so that the initial value of the portfolio is zero. Our data spans from 1963 to 2022 and we use an average of over 500 stocks to construct portfolios for each trading day. The annualized returns of our lead-lag portfolios are over 20%, and the returns outperform all lead-lag benchmarks in the literature. There is little overlap between the leaders and the followers we find and those that are reported in previous studies based on market capitalization, volume traded, and intra-industry relationships. Our findings support the slow information diffusion hypothesis; i.e., portfolios rebalanced once a day consistently outperform the bidiurnal, weekly, bi-weekly, tri-weekly, and monthly rebalanced portfolios.
A Path Shadowing Monte-Carlo method provides prediction of future paths given any generative model.
At a given date, it averages future quantities over generated price paths whose past history matches, or “shadows”, the actual (observed) history.
We test our approach using paths generated from a maximum entropy model of financial prices,
based on the recently introduced “Scattering Spectra” which are multi-scale analogues of the standard skewness and kurtosis.
This model promotes diversity of generated paths while reproducing the main statistical properties of financial prices, including stylized facts on volatility roughness.
Our method yields state-of-the-art predictions for future realized volatility. It also allows one to determine conditional option smiles for the S&P500.
These smiles depend only on the distribution of the price process, and are shown to outperform both the current version of the Path Dependent Volatility model and the option market itself.
We propose a novel methodology for modeling and forecasting multivariate realized volatilities using graph neural networks. This approach extends the work of Zhang et al. [2022] (Graph-based methods for forecasting realized covariances) and explicitly incorporates the spillover effects from multi-hop neighbors and nonlinear relationships into the volatility forecasts. Our findings provide strong evidence that the information from multi-hop neighbors does not offer a clear advantage in terms of predictive accuracy. However, modeling the nonlinear spillover effects significantly enhances the forecasting accuracy of realized volatilities over up to one month. Our model is flexible and allows for training with different loss functions, and the results generally suggest that using Quasi-likelihood as the training loss can significantly improve the model performance, compared to the commonly-used mean squared error. A comprehensive series of evaluation tests and alternative model specifications confirm the robustness of our results.
Paper available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375165
We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree-based models in terms of performance, due to their ability to uncover and model complex latent interactions among variables. Our findings remain robust when we apply trained models to new stocks that have not been included in the training set, thus providing new empirical evidence for a universal volatility mechanism among stocks. Finally, we propose a new approach to forecasting one-day-ahead RVs using past intraday RVs as predictors, and highlight interesting time-of-day effects that aid the forecasting mechanism. The results demonstrate that the proposed methodology yields superior out-of-sample forecasts over a strong set of traditional baselines that only rely on past daily RVs.
Nonlinear filtering is a central mathematical tool in understanding how we process information. Unfortunately, the equations involved are often high dimensional, and therefore, in practical applications, approximate filters are often employed in place of the optimal filter. The error introduced by using these approximations is generally poorly understood. In this talk we will see how, in the case where the underlying process is a continuous-time, finite-state Markov Chain, results on the stability of filters can be strengthened to yield bounds for the error between the optimal filter and a general approximate filter. We will then consider the 'projection filter', a low dimensional approximation of the filtering equation originally due to D. Brigo and collaborators, and show that its error is indeed well-controlled. The talk is based on joint work with Sam Cohen.
Stochastic portfolio theory is a framework to study large equity markets over long time horizons. In such settings investors are often confined to trading in an “open market” setup consisting of only assets with high capitalizations. In this work we relax previously studied notions of open markets and develop a tractable framework for them under mild structural conditions on the market.
Within this framework we also introduce a large parametric class of processes, which we call rank Jacobi processes. They produce a stable capital distribution curve consistent with empirical observations. Moreover, there are explicit expressions for the growth-optimal portfolio, and they are also shown to serve as worst-case models for a robust asymptotic growth problem under model ambiguity.
Time permitting, I will also present an extended class of models and illustrate calibration results to CRSP Equity Data.
This talk is based on joint work with Martin Larsson.
This talk presents a general framework for modelling the dynamics of limit order books, built on the combination of two modelling ingredients: the order flow, modelled as a general spatial point process, and the market clearing, modelled via a deterministic ‘mass transport’ operator acting on distributions of buy and sell orders. At the mathematical level, this corresponds to a natural decomposition of the infinitesimal generator describing the order book evolution into two operators: the generator of the order flow and the clearing operator. Our model provides a flexible framework for modelling and simulating order book dynamics and studying various scaling limits of discrete order book models. We show that our framework includes previous models as special cases and yields insights into the interplay between order flow and price dynamics. This talk is based on joint work with Rama Cont and Pierre Degond.
The Uniswap v3 ecosystem is built upon liquidity pools, where pairs of tokens are exchanged subject to a fee. We propose a systematic workflow to extract a meaningful but tractable sub-universe out of the current > 6,000 pools. We filter by imposing minimum levels on individual pool features, e.g. liquidity locked and agents’ activity, but also maximising the interconnection between the chosen pools to support broader dynamics. Then, we investigate liquidity consumption behaviour on the most relevant pools for Jan-June 2022. We propose to describe each liquidity taker by a transaction graph, which is a complete graph where nodes are transactions on pools and edges have weights from the time elapsed between pairs of transactions. Each graph is embedded into a vector by our own variant of the NLP rooted graph2vec algorithm. Thus, we are able to investigate the structural equivalence of liquidity takers behaviour and extract seven clusters with interpretable features. Finally, we introduce an ideal crypto law inspired from the ideal gas law of thermodynamics. Our model tests a relationship between variables that govern the mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. If the law is satisfied, we say the pool has high cryptoness and demonstrate that it constitutes a better venue for the activity of market participants. Our metric could be employed by regulators and practitioners for developing pool health monitoring tools and establishing minimum levels of requirements.