Forthcoming events in this series


Tue, 03 Dec 2024
16:00
L6

Large deviations of Selberg’s CLT: upper and lower bounds

Emma Bailey
(University of Bristol)
Abstract

Selberg’s CLT informs us that the logarithm of the Riemann zeta function evaluated on the critical line behaves as a complex Gaussian. It is natural, therefore, to study how far this Gaussianity persists. This talk will present conditional and unconditional results on atypically large values, and concerns work joint with Louis-Pierre Arguin and Asher Roberts.

Tue, 26 Nov 2024
16:00
L6

Level repulsion and the Floquet quantum Ising model beyond integrability

Felix von Oppen
(Freie Universität Berlin)
Abstract

Motivated by a recent experiment on a superconducting quantum
information processor, I will discuss the Floquet quantum Ising model in
the presence of integrability- and symmetry-breaking random fields. The
talk will focus on the relation between boundary spin correlations,
spectral pairings, and effects of the random fields. If time permits, I
will also touch upon self-similarity in the dynamic phase diagram of
Fibonacci-driven quantum Ising models.
 

Tue, 19 Nov 2024
16:00
L6

Will large economies be stable?

Jean-Philippe Bouchaud
(Ecole Normale Supérieure/Capital Fund Management)
Abstract

We study networks of firms in which inputs for production are not easily substitutable, as in several real-world supply chains. Building on Robert May's original argument for large ecosystems, we argue that such networks generically become dysfunctional when their size increases, when the heterogeneity between firms becomes too strong, or when substitutability of their production inputs is reduced. At marginal stability and for large heterogeneities, crises can be triggered by small idiosyncratic shocks, which lead to “avalanches” of defaults. This scenario would naturally explain the well-known “small shocks, large business cycles” puzzle, as anticipated long ago by Bak, Chen, Scheinkman, and Woodford. However, an out-of-equilibrium version of the model suggests that other scenarios are possible, in particular that of `turbulent economies’.

Tue, 12 Nov 2024
13:00
L6

Randomised Quantum Circuits for Practical Quantum Advantage

Bálint Koczor
(Mathematical Institute (University of Oxford))
Abstract

Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
 
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.

 

Tue, 05 Nov 2024
16:00
L6

Random growth models with half space geometry

Jimmy He
(Ohio State University)
Abstract
Random growth models in 1+1 dimension capture the behavior of interfaces evolving in the presence of noise. These models are expected to exhibit universal behavior including intriguing occurrences of random matrix distributions, but we are still far from proving such results even in relatively simple models. A key development which has led to recent progress is the discovery of exact formulas for certain models with a rich algebraic structure. I will discuss some of these results, with a focus on models where a single boundary wall is present, as well as applications to other areas of probability.



 

Tue, 29 Oct 2024
16:00
L6

"Musical chairs": dynamical aspects of rank-one non-normal deformations.

Guillaume Dubach
(Ecole Polytechnique (CMLS))
Abstract

We will present some of the remarkable properties of eigenvalue trajectories for rank-one perturbations of random matrices, with an emphasis on two models of particular interest, namely weakly non-Hermitian and weakly non-unitary matrices. In both cases, precise estimates can be obtained for the critical timescale at which an outlier can be observed with high probability. We will outline the proofs of these results and highlight their significance in connection with quantum chaotic scattering. (Based on joint works with L. Erdös and J. Reker)

Tue, 22 Oct 2024
16:00
L6

Simultaneous extreme values of zeta and L-functions

Winston Heap
(Max Planck Institute Bonn)
Abstract
I will discuss a recent joint work with Junxian Li which examines joint distributional properties of L-functions, in particular, their extreme values. Here, it is not clear if the analogy with random matrix theory persists, although I will discuss some speculations. Using a modification of the resonance method we demonstrate the simultaneous occurrence of extreme values of L-functions on the critical line. The method extends to other families and can be used to show both simultaneous large and small values.
 



 

Tue, 15 Oct 2024
16:00
L6

The third moment of the logarithm of the Riemann zeta function

Maxim Gerspach
(KTH Royal Institute of Technology)
Abstract

I will present joint work with Alessandro Fazzari in which we prove precise conditional estimates for the third (non-absolute) moment of the logarithm of the Riemann zeta function, beyond the Selberg central limit theorem, both for the real and imaginary part. These estimates match predictions made in work of Keating and Snaith. We require the Riemann Hypothesis, a conjecture for the triple correlation of Riemann zeros and another ``twisted'' pair correlation conjecture which captures the interaction of a prime power with Montgomery's pair correlation function. This conjecture can be proved on a certain subrange unconditionally, and on a larger range under the assumption of a variant of the Hardy-Littlewood conjecture with good uniformity.

Tue, 04 Jun 2024
16:00
L6

Moments of the Riemann zeta-function and restricted magic squares

Ofir Gorodetsky
(University of Oxford)
Abstract
Conrey and Gamburd expressed the so-called pseudomoments of the Riemann zeta function in terms of counts of certain magic squares.
In work-in-progress with Brad Rodgers we take a magic-square perspective on the moments of zeta themselves (instead of pseudomoments), and the related moments of the Dirichlet polynomial sum_{n<N} n^{-1/2 -it}.
Assuming the shifted moment conjecture we are able to express these moments in terms of certain multiplicative magic squares.
We'll review the works of Conrey and Gamburd, and other related results, and give some of the ideas behind the proofs.



 

Tue, 21 May 2024
16:00
L6

Fermions in low dimensions and non-Hermitian random matrices

Gernot Akemann
(Bielefeld University/University of Bristol)
Abstract

The ground state of N noninteracting Fermions in a rotating harmonic trap enjoys a one-to-one mapping to the complex Ginibre ensemble. This setup is equivalent to electrons in a magnetic field described by Landau levels. The mean, variance and higher order cumulants of the number of particles in a circular domain can be computed exactly for finite N and in three different large-N limits. In the bulk and at the edge of the spectrum the result is universal for a large class of rotationally invariant potentials. In the bulk the variance and entanglement entropy are proportional and satisfy an area law. The same universality can be proven for the quaternionic Ginibre ensemble and its corresponding generalisation. For the real Ginibre ensemble we determine the large-N limit at the origin and conjecture its universality in the bulk and at the edge.

 

Tue, 07 May 2024
14:00
L6

On the density of complex eigenvalues of sub-unitary scattering matrices in quantum chaotic systems.

Yan Fyodorov
(King's College London)
Abstract

The scattering matrix in quantum mechanics must be unitary to ensure the conservation of the number of particles, hence their 
eigenvalues are unimodular.  In systems with fully developed Quantum Chaos  the statistics of those unimodular 
eigenvalues  is well described by  the Poisson kernel.
However, in real experiments  the associated scattering matrix is sub-unitary due to intrinsic losses,  and
 the moduli of S-matrix eigenvalues become non-trivial,  yet the corresponding theory is not well-developed in general.  
 I will present some results for the mean density of those moduli in the framework of random matrix models for the case of broken time-reversal invariance,
and discuss a way to get a generalization of the Poisson kernel to systems with uniform losses.

Tue, 30 Apr 2024
16:00
L6

Best approximation by restricted divisor sums and random matrix integrals

Brad Rodgers (Queen's University, Kingston)
Abstract

Let X and H be large, and consider n ranging from 1 to X. For an arithmetic function f(n), what is the best mean square approximation of f(n) by a restricted divisor sum (a function of the sort sum_{d|n, d < H} a_d)? I hope to explain how for a wide variety of arithmetic functions, when X grows and H grows like a power of X, a solution of this problem is connected to the evaluation of random matrix integrals. The problem is connected to some combinatorial formula for computing high moments of traces of random unitary matrices and I hope to discuss this also.

Tue, 05 Mar 2024
16:00
L6

Hybrid Statistics of the Maxima of a Random Model of the Zeta Function over Short Intervals

Christine Chang
(CUNY Graduate Center)
Abstract

We will present a matching upper and lower bound for the right tail probability of the maximum of a random model of the Riemann zeta function over short intervals.  In particular, we show that the right tail interpolates between that of log-correlated and IID random variables as the interval varies in length. We will also discuss a new normalization for the moments over short intervals. This result follows the recent work of Arguin-Dubach-Hartung and is inspired by a conjecture by Fyodorov-Hiary-Keating on the local maximum over short intervals.



 

Tue, 27 Feb 2024
16:00
L6

Dynamics in interlacing arrays, conditioned walks and the Aztec diamond

Theodoros Assiotis
(University of Edinburgh)
Abstract

I will discuss certain dynamics of interacting particles in interlacing arrays with inhomogeneous, in space and time, jump probabilities and their relations to conditioned random walks and random tilings of the Aztec diamond.

Tue, 13 Feb 2024

16:00 - 17:00
L6

Large-size Behavior of the Entanglement Entropy of Free Disordered Fermions

Leonid Pastur
(King's College London / B. Verkin Institute for Low Temperature Physics and Engineering)
Abstract

We consider a macroscopic system of free lattice fermions, and we are interested in the entanglement entropy (EE) of a large block of size L of the system, treating the rest of the system as the macroscopic environment of the block. Entropy is a widely used quantifier of quantum correlations between a block and its surroundings. We begin with known results (mostly one-dimensional) on the asymptotics form of EE of translation-invariant systems for large L, where for any value of the Fermi energy there are basically two asymptotics known as area law and enhanced (violated ) area law. We then show that in the disordered case and for the Fermi energy belonging to the localized spectrum of a one-body Hamiltonian, the EE obeys the area law for all typical realizations of disorder and any dimension. As for the enhanced area law, it turns out to be possible for some special values of the Fermi energy in the one-dimensional case

Tue, 06 Feb 2024

16:00 - 17:00
L6

Non-constant ground configurations in the disordered ferromagnet and minimal cuts in a random environment.

Michal Bassan
(University of Oxford )
Abstract
The disordered ferromagnet is a disordered version of the ferromagnetic Ising model in which the coupling constants are quenched random, chosen independently from a distribution on the non-negative reals. A ground configuration is an infinite-volume configuration whose energy cannot be reduced by finite modifications. It is a long-standing challenge to ascertain whether the disordered ferromagnet on the Z^D lattice admits non-constant ground configurations. When D=2, the problem is equivalent to the existence of bigeodesics in first-passage percolation, so a negative answer is expected. We provide a positive answer in dimensions D>=4, when the distribution of the coupling constants is sufficiently concentrated.

 
The talk will discuss the problem and its background, and present ideas from the proof. Based on joint work of with Shoni Gilboa and Ron Peled.
Tue, 30 Jan 2024

16:00 - 17:00
L6

Characteristic polynomials, the Hybrid model, and the Ratios Conjecture

Andrew Pearce-Crump
(University of York)
Abstract

In the 1960s Shanks conjectured that the  ζ'(ρ), where ρ is a non-trivial zero of zeta, is both real and positive in the mean. Conjecturing and proving this result has a rich history, but efforts to generalise it to higher moments have so far failed. Building on the work of Keating and Snaith using characteristic polynomials from Random Matrix Theory, the Hybrid model of Gonek, Hughes and Keating, and the Ratios Conjecture of Conrey, Farmer, and Zirnbauer, we have been able to produce new conjectures for the full asymptotics of higher moments of the derivatives of zeta. This is joint work with Chris Hughes.

Tue, 23 Jan 2024

16:00 - 17:00
L6

Combinatorial moment sequences

Natasha Blitvic
(Queen Mary University of London)
Abstract

We will look at a number of interesting examples — some proven, others merely conjectured — of Hamburger moment sequences in combinatorics. We will consider ways in which this positivity may be expected: for instance, in different types of combinatorial statistics on perfect matchings that encode moments of noncommutative analogues of the classical Central Limit Theorem. We will also consider situations in which this positivity may be surprising, and where proving it would open up new approaches to a class of very hard open problems in combinatorics.

Tue, 16 Jan 2024

16:00 - 17:00
L6

Branching selection particle systems and the selection principle.

Julien Berestycki
(Department of Statistics, University of Oxford)
Abstract
The $N$-branching Brownian motion with selection ($N$-BBM) is a particle system consisting of $N$ independent particles that diffuse as Brownian motions in $\mathbb{R}$, branch at rate one, and whose size is kept constant by removing the leftmost particle at each branching event. It is a very simple model for the evolution of a population under selection that has generated some fascinating research since its introduction by Brunet and Derrida in the early 2000s.
 
If one recentre the positions by the position of the left most particle, this system has a stationary distribution. I will show that, as $N\to\infty$ the stationary empirical measure of the $N$-particle system converges to the minimal travelling wave of an associated free boundary PDE. This resolves an open question going back at least to works of e.g. Maillard in 2012.
It follows a recent related result by Oliver Tough (with whom this is joint work) establishing a similar selection principle for the so-called Fleming-Viot particle system.
 
With very best wishes,
Julien
Tue, 28 Nov 2023

16:00 - 17:00
L6

Random tree encodings and snakes

Christina Goldschmidt
(University of Oxford)
Abstract

There are several functional encodings of random trees which are commonly used to prove (among other things) scaling limit results.  We consider two of these, the height process and Lukasiewicz path, in the classical setting of a branching process tree with critical offspring distribution of finite variance, conditioned to have n vertices.  These processes converge jointly in distribution after rescaling by n^{-1/2} to constant multiples of the same standard Brownian excursion, as n goes to infinity.  Their difference (taken with the appropriate constants), however, is a nice example of a discrete snake whose displacements are deterministic given the vertex degrees; to quote Marckert, it may be thought of as a “measure of internal complexity of the tree”.  We prove that this discrete snake converges on rescaling by n^{-1/4} to the Brownian snake driven by a Brownian excursion.  We believe that our methods should also extend to prove convergence of a broad family of other “globally centred” discrete snakes which seem not to be susceptible to the methods of proof employed in earlier works of Marckert and Janson.

This is joint work in progress with Louigi Addario-Berry, Serte Donderwinkel and Rivka Mitchell.

 

Tue, 21 Nov 2023

16:00 - 17:00
L6

Beyond i.i.d. weights: sparse and low-rank deep Neural Networks are also Gaussian Processes

Thiziri Nait Saada
(Mathematical Institute (University of Oxford))
Abstract

The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that enables a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews (2018) to a larger class of initial weight distributions (which we call "pseudo i.i.d."), including the established cases of i.i.d. and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with pseudo i.i.d. distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training.

Tue, 14 Nov 2023

16:00 - 17:00
L6

Percolation phase transition for the vacant set of random walk

Pierre-François Rodriguez
(Imperial College London)
Abstract

The vacant set of the random walk on the torus undergoes a percolation phase transition at Poissonian timescales in dimensions 3 and higher. The talk will review this phenomenon and discuss recent progress regarding the nature of the transition, both for this model and its infinite-volume limit, the vacant set of random interlacements, introduced by Sznitman in Ann. Math., 171 (2010), 2039–2087. The discussion will lead up to recent progress regarding the long purported equality of several critical parameters naturally associated to the transition. 

 

Tue, 07 Nov 2023

16:00 - 17:00
L6

Universal universality breaking for random partitions

Harriet Walsh
(University of Angers)
Abstract

I will talk about a family of measures on partitions (specifically, a case of Okounkov's Schur measures) which are in one-to-one correspondence with models of random unitary matrices and lattice fermions. Under these measures, as the expected size of a partition goes to infinity, the first part of a random partition generically exhibits the same universal asymptotic fluctuations as the largest eigenvalue of a GUE random Hermitian matrix. First, I'll describe how we can tune these measures to exhibit new edge fluctuations at a smaller scale, which naturally generalise the GUE edge behaviour. These new fluctuations are universal, having previously been found for trapped fermions, and when a measure is tuned to have them, the corresponding unitary matrix model is "multicritical". Then, I'll describe how our measures can escape these more general universality classes, when tuned to have several cuts in a certain "Fermi sea". In this case, the breakdown in universality arises from an oscillation phenomenon previously observed in multi-cut Hermitian matrix models. Moreover, we have a one-to-one correspondence with multi-cut unitary matrix models. This is partly based on joint work with Dan Betea and Jérémie Bouttier. 

Tue, 31 Oct 2023

16:00 - 17:00
L6

Bounding the Large Deviations in Selberg's Central Limit Theorem

Louis-Pierre Arguin
(University of Oxford)
Abstract

It was proved by Selberg's in the 1940's that the typical values of the logarithm of the Riemann zeta function on the critical line is distributed like a complex Gaussian random variable. In this talk, I will present recent work with Emma Bailey that extends the Gaussian behavior for the real part to the large deviation regime. This gives a new proof of unconditional upper bounds of the $2k$-moments of zeta for $0\leq k\leq 2$, and lower bounds for $k>0$. I will also discuss the connections with random matrix theory and with the Moments Conjecture of Keating & Snaith.