Forthcoming events in this series


Tue, 10 Jun 2025
16:00

Random multiplicative functions and their distribution

Seth Hardy
(University of Warwick)
Abstract

Understanding the size of the partial sums of the Möbius function is one of the most fundamental problems in analytic number theory. This motivated the 1944 paper of Wintner, where he introduced the concept of a random multiplicative function: a probabilistic model for the Möbius function. In recent years, it has been uncovered that there is an intimate connection between random multiplicative functions and the theory of Gaussian Multiplicative Chaos, an area of probability theory introduced by Kahane in the 1980's. We will survey selected results and discuss recent research on the distribution of partial sums of random multiplicative functions when restricted to integers with a large prime factor.

Tue, 03 Jun 2025
16:00

The Fourier coefficients of the holomorphic multiplicative chaos

Joseph Najnudel
(University of Bristol)
Abstract

In this talk, we consider the coefficients of the Fourier series obtained by exponentiating a logarithmically correlated holomorphic function on the open unit disc, whose Taylor coefficients are independent complex Gaussian variables, the variance of the coefficient of degree k being theta/k where theta > 0 is an inverse temperature parameter. In joint articles with Paquette, Simm and Vu, we show a randomized version of the central limit theorem in the subcritical phase theta < 1, the random variance being related to the Gaussian multiplicative chaos on the unit circle. We also deduce, from results on the holomorphic multiplicative chaos, other results on the coefficients of the characteristic polynomial of the Circular Beta Ensemble, where the parameter beta is equal to 2/theta. In particular, we show that the central coefficient of the characteristic polynomial of the Circular Unitary Ensembles tends to zero in probability, answering a question asked in an article by Diaconis and Gamburd.

Tue, 27 May 2025
16:00

Resurgence and arithmetic of q-series: from quantum operators to quantum modular forms

Claudia Rella
(Institut des Hautes Etudes Scientifiques)
Abstract

Perturbative expansions in quantum theory, particularly in quantum field theory and string theory, are typically factorially divergent due to underlying non-perturbative sectors. Resurgence provides a universal toolbox to access the non-perturbative effects hidden within the perturbative series, producing a collection of exponentially small corrections. Under special assumptions, the non-perturbative data extracted via resurgent methods exhibit intrinsic number-theoretic structures that are deeply rooted in the symmetries of the theory. The framework of modular resurgence aims to formalise this observation. In this talk, I will first introduce the systematic, algebraic approach of resurgence to the problem of divergences and describe the emerging bridge between the resurgence of q-series and the analytic and number-theoretic properties of L-functions and quantum modular forms. I will then apply it to the spectral theory of quantum operators associated with toric Calabi-Yau threefolds. Here, a complete realisation of the modular resurgence paradigm is found in the study of the spectral trace of local P^2, where the asymptotics at weak and strong coupling are captured by certain q-series, and is generalised to all local weighted projective planes. This talk is based on arXiv:2212.10606, 2404.10695, 2404.11550, and work to appear soon.



 

Tue, 20 May 2025
16:00
L6

Approaching the two-point Chowla conjecture via matrices

Cedric Pilatte
(University of Oxford)
Abstract

The two-point Chowla conjecture predicts that $\sum_{x<n<2x} \lambda(n)\lambda(n+1) = o(x)$ as $x\to \infty$, where $\lambda$ is the Liouville function (a $\{\pm 1\}$-valued multiplicative function encoding the parity of the number of prime factors). While this remains an open problem, weaker versions of this conjecture are known. In this talk, we outline an approach initiated by Helfgott and Radziwill, which reformulates the problem in terms of bounding the eigenvalues of a certain matrix.

Tue, 13 May 2025
16:00
L6

Random matrix theory and optimal transport

Bence Borda
(University of Sussex)
Abstract

The Wasserstein metric originates in the theory of optimal transport, and among many other applications, it provides a natural way to measure how evenly distributed a finite point set is. We give a survey of classical and more recent results that describe the behaviour of some random point processes in Wasserstein metric, including the eigenvalues of some random matrix models, and explain the connection to the logarithm of the characteristic polynomial of a random unitary matrix. We also discuss a simple random walk model on the unit circle defined in terms of a quadratic irrational number, which turns out to be related to surprisingly deep arithmetic properties of real quadratic fields.

Tue, 13 May 2025
10:00

TBA

Seth Hardy
(University of Warwick)
Tue, 06 May 2025
16:00
L6

Random matrix insights into discrete moments

Christopher Hughes
(University of York)
Abstract

One curious little fact about the Riemann zeta function is that if you evaluate its derivatives at the zeros of zeta, then on average this is real and positive (even though the function is complex). This has been proven for some time now, but the aim of this talk is to generalise the question further (higher derivatives, complex moments) and gain insight using random matrix theory. The takeaway message will be that there are a multitude of different proof techniques in RMT, each with their own advantages

Tue, 29 Apr 2025
16:00
L6

Thick points of the planar Gaussian free field 

Ellen Powell
(Durham University)
Abstract
The Gaussian Free Field (GFF) in two dimensions is a random field which can be viewed as a multidimensional analogue of Brownian motion, and appears as a universal scaling limit of a class of discrete height functions. Thick points of the GFF are points where, roughly speaking, the field is atypically high. They provide key insights into the geometric properties of the field, and are the basis for construction of important associated objects in random planar geometry. The set of thick points with thickness level a is a fractal set with Hausdorff dimension 2-a^2/2. In this talk I will discuss another fundamental property, namely, that the set is almost surely disconnected for all non-zero a. This is based on joint work with Juhan Aru and Léonie Papon, and uses a remarkable relationship between the GFF and the "conformal loop ensemble" of parameter 4. 
Tue, 11 Mar 2025
16:00
L6

On non-Gaussian multiplicative chaos

Mo Dick Wong
(Durham University)
Abstract

We consider two approximation schemes for the construction of a class of non-Gaussian multiplicative chaos, and show that they give rise to the same limit in the entire subcritical regime. Our approach uses a modified second moment method with the help of a new coupling argument, and does not rely on any Gaussian approximation or thick point analysis. As an application, we extend the martingale central limit theorem for partial sums of random multiplicative functions to L^1 twists. This is a joint work with Ofir Gorodetsky.

Tue, 04 Mar 2025
16:00
L6

Fermionic structure in the Abelian sandpile and the uniform spanning tree

Alessandra Cipriani
(University College London)
Abstract
In this talk we consider a stochastic system of sand grains moving on a finite graph: the Abelian sandpile, a prototype of self-organized lattice model. We focus on the function that indicates whether a single grain of sand is present at a site, and explore its connections with the discrete Gaussian free field, the uniform spanning tree, and the fermionic Gaussian free field. Based on joint works with L. Chiarini (Durham), R. S. Hazra (Leiden), A. Rapoport and W. Ruszel (Utrecht).



 

Tue, 25 Feb 2025
16:00
L6

The Critical 2d Stochastic Heat Flow and some first properties

Nikos Zygouras
(University of Warwick)
Abstract

The Critical 2d Stochastic Heat Flow arises as a non-trivial solution
of the Stochastic Heat Equation (SHE) at the critical dimension 2 and at a phase transition point.
It is a log-correlated field which is neither Gaussian nor a Gaussian Multiplicative Chaos.
We will review the phase transition of the 2d SHE, describe the main points of the construction of the Critical 2d SHF
and outline some of its features and related questions. Based on joint works with Francesco Caravenna and Rongfeng Sun.

Tue, 18 Feb 2025
16:00
L6

Fluctuations of the ground-state energy of the elastic manifold

Bertrand Lacroix-A-Chez-Toine
(Kings College London)
Abstract

In this talk I will consider properties of the disordered elastic manifold, describing an N-dimensional field u(x) defined for sites x of a d-dimensional lattice of linear size L. This prototypical model is used to describe interfaces in a wide range of physical systems [1]. I will consider properties of the ground-state energy for this model whose optimal configuration u_0(x) results from a compromise between the disorder which tend to favour sharp variations of the field and elastic interactions that smoothen them. I will study in particular the limit of large N>>1 and finite d which has been studied extensively in the physics literature (notably using the replica approach) [1,2] and has recently been considered in a series of paper by Ben Arous and Kivimae [3,4]. For this model, we compute exactly the large deviation function of the ground-state energy E_0, showing that it displays replica-symmetry breaking transitions. As an interesting outcome of this study, we show analytically the validity of the scaling law conjectured by Mezard and Parisi [2] for the variance of the ground-state energy. The latter relates the exponent of the variance Var(E_0)\sim L^{2\theta} such that \theta=2\zeta+d-2 with \zeta the exponent characterising the transverse fluctuations of the optimal configuration u_0(x), i.e.  (u_0(x)-u_0(x+y))^2\sim |y|^{2\zeta}. This work is done in collaboration with Y.V. Fyodorov (KCL) and P. Le Doussal (LPENS, CNRS).

 

[1] Giamarchi, T., & Le Doussal, P. (1998). Statics and dynamics of disordered elastic systems. In Spin glasses and random fields (pp. 321-356).

 

[2] Mézard, M., & Parisi, G. (1991). Replica field theory for random manifolds. Journal de Physique I1(6), 809-836.

 

[3] Ben Arous, G., & Kivimae, P. (2024). The Free Energy of the Elastic Manifold. arXiv preprint arXiv:2410.19094.

 

[4] Ben Arous, G., & Kivimae, P. (2024). The larkin mass and replica symmetry breaking in the elastic manifold. arXiv preprint arXiv:2410.22601.

Tue, 11 Feb 2025
16:00

Derivative moments of CUE characteristic polynomials and the Riemann zeta function

Nick Simm
(University of Sussex)
Abstract
I will discuss recent work on the derivative of the characteristic polynomial from the Circular Unitary Ensemble. The main focus is on the calculation of moments with values of the spectral parameter z inside the unit disc. We investigate three asymptotic regimes depending on the distance of z to the unit circle, as the size of the matrices tends to infinity. I will also discuss some corresponding results for the derivative of the Riemann zeta function. This is joint work with Fei Wei (Sussex).



 

Tue, 28 Jan 2025
16:00
L6

Zigzag strategy for random matrices

Sven Joscha Henheik
(IST Austria)
Abstract

It is a remarkable property of random matrices, that their resolvents tend to concentrate around a deterministic matrix as the dimension of the matrix tends to infinity, even for a small imaginary part of the involved spectral parameter.
These estimates are called local laws and they are the cornerstone in most of the recent results in random matrix theory. 
In this talk, I will present a novel method of proving single-resolvent and multi-resolvent local laws for random matrices, the Zigzag strategy, which is a recursive tandem of the characteristic flow method and a Green function comparison argument. Novel results, which we obtained via the Zigzag strategy, include the optimal Eigenstate Thermalization Hypothesis (ETH) for Wigner matrices, uniformly in the spectrum, and universality of eigenvalue statistics at cusp singularities for correlated random matrices. 
 

Based on joint works with G. Cipolloni, L. Erdös, O. Kolupaiev, and V. Riabov.

Tue, 21 Jan 2025
16:00
L6

Typical hyperbolic surfaces have an optimal spectral gap

Laura Monk
(University of Bristol )
Abstract
The first non-zero Laplace eigenvalue of a hyperbolic surface, or its spectral gap, measures how well-connected the surface is: surfaces with a large spectral gap are hard to cut in pieces, have a small diameter and fast mixing times. For large hyperbolic surfaces (of large area or large genus g, equivalently), we know that the spectral gap is asymptotically bounded above by 1/4. The aim of this talk is to present an upcoming article, joint with Nalini Anantharaman, where we prove that most hyperbolic surfaces have a near-optimal spectral gap. That is to say, we prove that, for any ε>0, the Weil-Petersson probability for a hyperbolic surface of genus g to have a spectral gap greater than 1/4-ε goes to one as g goes to infinity. This statement is analogous to Alon’s 1986 conjecture for regular graphs, proven by Friedman in 2003. I will present our approach, which shares many similarities with Friedman’s work, and relies on creating cancellations in the trace method.
 
The focus of this talk will be mostly analytic as I will present its geometric components at the GGT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.
Tue, 03 Dec 2024
16:00
L6

Large deviations of Selberg’s CLT: upper and lower bounds

Emma Bailey
(University of Bristol)
Abstract

Selberg’s CLT informs us that the logarithm of the Riemann zeta function evaluated on the critical line behaves as a complex Gaussian. It is natural, therefore, to study how far this Gaussianity persists. This talk will present conditional and unconditional results on atypically large values, and concerns work joint with Louis-Pierre Arguin and Asher Roberts.

Tue, 26 Nov 2024
16:00
L6

Level repulsion and the Floquet quantum Ising model beyond integrability

Felix von Oppen
(Freie Universität Berlin)
Abstract

Motivated by a recent experiment on a superconducting quantum
information processor, I will discuss the Floquet quantum Ising model in
the presence of integrability- and symmetry-breaking random fields. The
talk will focus on the relation between boundary spin correlations,
spectral pairings, and effects of the random fields. If time permits, I
will also touch upon self-similarity in the dynamic phase diagram of
Fibonacci-driven quantum Ising models.
 

Tue, 19 Nov 2024
16:00
L6

Will large economies be stable?

Jean-Philippe Bouchaud
(Ecole Normale Supérieure/Capital Fund Management)
Abstract

We study networks of firms in which inputs for production are not easily substitutable, as in several real-world supply chains. Building on Robert May's original argument for large ecosystems, we argue that such networks generically become dysfunctional when their size increases, when the heterogeneity between firms becomes too strong, or when substitutability of their production inputs is reduced. At marginal stability and for large heterogeneities, crises can be triggered by small idiosyncratic shocks, which lead to “avalanches” of defaults. This scenario would naturally explain the well-known “small shocks, large business cycles” puzzle, as anticipated long ago by Bak, Chen, Scheinkman, and Woodford. However, an out-of-equilibrium version of the model suggests that other scenarios are possible, in particular that of `turbulent economies’.

Tue, 12 Nov 2024
13:00
L6

Randomised Quantum Circuits for Practical Quantum Advantage

Bálint Koczor
(Mathematical Institute (University of Oxford))
Abstract

Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
 
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.

 

Tue, 05 Nov 2024
16:00
L6

Random growth models with half space geometry

Jimmy He
(Ohio State University)
Abstract
Random growth models in 1+1 dimension capture the behavior of interfaces evolving in the presence of noise. These models are expected to exhibit universal behavior including intriguing occurrences of random matrix distributions, but we are still far from proving such results even in relatively simple models. A key development which has led to recent progress is the discovery of exact formulas for certain models with a rich algebraic structure. I will discuss some of these results, with a focus on models where a single boundary wall is present, as well as applications to other areas of probability.



 

Tue, 29 Oct 2024
16:00
L6

"Musical chairs": dynamical aspects of rank-one non-normal deformations.

Guillaume Dubach
(Ecole Polytechnique (CMLS))
Abstract

We will present some of the remarkable properties of eigenvalue trajectories for rank-one perturbations of random matrices, with an emphasis on two models of particular interest, namely weakly non-Hermitian and weakly non-unitary matrices. In both cases, precise estimates can be obtained for the critical timescale at which an outlier can be observed with high probability. We will outline the proofs of these results and highlight their significance in connection with quantum chaotic scattering. (Based on joint works with L. Erdös and J. Reker)

Tue, 22 Oct 2024
16:00
L6

Simultaneous extreme values of zeta and L-functions

Winston Heap
(Max Planck Institute Bonn)
Abstract
I will discuss a recent joint work with Junxian Li which examines joint distributional properties of L-functions, in particular, their extreme values. Here, it is not clear if the analogy with random matrix theory persists, although I will discuss some speculations. Using a modification of the resonance method we demonstrate the simultaneous occurrence of extreme values of L-functions on the critical line. The method extends to other families and can be used to show both simultaneous large and small values.
 



 

Tue, 15 Oct 2024
16:00
L6

The third moment of the logarithm of the Riemann zeta function

Maxim Gerspach
(KTH Royal Institute of Technology)
Abstract

I will present joint work with Alessandro Fazzari in which we prove precise conditional estimates for the third (non-absolute) moment of the logarithm of the Riemann zeta function, beyond the Selberg central limit theorem, both for the real and imaginary part. These estimates match predictions made in work of Keating and Snaith. We require the Riemann Hypothesis, a conjecture for the triple correlation of Riemann zeros and another ``twisted'' pair correlation conjecture which captures the interaction of a prime power with Montgomery's pair correlation function. This conjecture can be proved on a certain subrange unconditionally, and on a larger range under the assumption of a variant of the Hardy-Littlewood conjecture with good uniformity.

Tue, 04 Jun 2024
16:00
L6

Moments of the Riemann zeta-function and restricted magic squares

Ofir Gorodetsky
(University of Oxford)
Abstract
Conrey and Gamburd expressed the so-called pseudomoments of the Riemann zeta function in terms of counts of certain magic squares.
In work-in-progress with Brad Rodgers we take a magic-square perspective on the moments of zeta themselves (instead of pseudomoments), and the related moments of the Dirichlet polynomial sum_{n<N} n^{-1/2 -it}.
Assuming the shifted moment conjecture we are able to express these moments in terms of certain multiplicative magic squares.
We'll review the works of Conrey and Gamburd, and other related results, and give some of the ideas behind the proofs.



 

Tue, 21 May 2024
16:00
L6

Fermions in low dimensions and non-Hermitian random matrices

Gernot Akemann
(Bielefeld University/University of Bristol)
Abstract

The ground state of N noninteracting Fermions in a rotating harmonic trap enjoys a one-to-one mapping to the complex Ginibre ensemble. This setup is equivalent to electrons in a magnetic field described by Landau levels. The mean, variance and higher order cumulants of the number of particles in a circular domain can be computed exactly for finite N and in three different large-N limits. In the bulk and at the edge of the spectrum the result is universal for a large class of rotationally invariant potentials. In the bulk the variance and entanglement entropy are proportional and satisfy an area law. The same universality can be proven for the quaternionic Ginibre ensemble and its corresponding generalisation. For the real Ginibre ensemble we determine the large-N limit at the origin and conjecture its universality in the bulk and at the edge.