11:00
Character rigidity and ergodic actions of non-uniform higher rank lattices
Abstract
The theory of characters for infinite groups, initiated by Thoma, is a natural generalization of the representation theory of finite groups. More precisely, a character on a discrete group is a normalised positive definite function which is conjugation invariant and extremal. Connes conjectured a rigidity result for characters of an important family of discrete groups, namely, irreducible lattices in higher-rank semisimple Lie groups. The conjecture states that every character is either the trace of a finite-dimensional representation, or vanishes off the center. This rigidity property implies the Stuck-Zimmer conjecture for such lattices, namely, ergodic actions are either essentially transitive or essentially free. I will present a recent joint result with Michael Glasner, Yuval Gorfine, Liam Hanany and Arie Levit in which we prove that non-uniform irreducible lattices in higher-rank semisimple groups are character rigid. As a result, we also obtain a resolution of the Stuck-Zimmer conjecture for all non-uniform lattices.