Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Thu, 22 Jan 2026
11:00
C1

$(\mathbb{C};+,\cdot,CM)$

Martin Bays
(Oxford University)
Abstract

In this ``journal club''-style advanced class, I will present some material from a recent paper of Tom Scanlon https://arxiv.org/abs/2508.17485 . Motivated by the question of decidability of the field C(t) of complex rational functions in one variable, he considers the structure $(\mathbb{C};+,\cdot,CM)$ of the complex field expanded by a predicate for the set CM of j-invariants of elliptic curves with complex multiplication (the "special points"). Analogous to Zilber's result from the 90s on stability of the expansion by a predicate for the roots of unity, Scanlon shows that Pila's solution to the André-Oort conjecture implies that this structure is stable, and moreover that effectivity in this conjecture due to Binyamini implies decidability. I aim to explain Scanlon's proof of this result in some detail.