### The Ultimate Supercompactness Measure

## Abstract

Solovay defined the inner model $L(\mathbb{R}, \mu)$ in the context of $\mathsf{AD}_{\mathbb{R}}$ by using it to define the supercompactness measure $\mu$ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ naturally given by $\mathsf{AD}_{\mathbb{R}}$. Solovay speculated that stronger versions of this inner model should exist, corresponding to stronger versions of the measure $\mu$. Woodin, in his unpublished work, defined $\mu_{\infty}$ which is arguably the ultimate version of the supercompactness measure $\mu$ that Solovay had defined. I will talk about $\mu_{\infty}$ in the context of $\mathsf{AD}^+$ and the axiom $\mathsf{V} = \mathsf{Ultimate\ L}$.