In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.
The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety. A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.