### The Jacobson-Morozov Theorem in positive characteristic

## Abstract

Let K be an algebraically closed field. Given three elements a Lie algebra over K, we say that these elements form an sl_2-triple if they generate a subalgebra which is a homomorphic image of sl_2(K). In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of sl_2-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic p, and discuss results for both the classical and exceptional Lie algebras.