# Past Algebra Seminar

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

I will explain the basics of 2-representation theory and will explain an approach to classifying 'simple' 2-representations of the Hecke 2-category (aka Soergel bimodules) for finite Coxeter types.

Positively folded galleries arise as images of retractions of buildings onto a fixed apartment and play a role in many areas of maths (such as in the study of affine Hecke algebras, Macdonald polynomials, MV-polytopes, and affine Deligne-Lusztig varieties). In this talk, we will define positively folded galleries, and then look at how these can be used to study affine flag varieties. We will also look at a new recursive description of the set of end alcoves of folded galleries with respect to alcove-induced orientations, which gives us a combinatorial description of certain double coset intersections in these affine flag varieties. This talk is based on joint work with Elizabeth Milićević, Petra Schwer and Anne Thomas.

I'll give a general introduction to tensor-triangular geometry, the algebraic study of tensor-triangulated categories as they appear in topology, geometry and representation theory. Then I'll discuss an elementary idea, that of a "field" in this theory, and explain what we currently know about them.

## Further Information:

A group is sofic when every finite subset can be well approximated in a finite symmetric group. The outstanding question, due to Gromov, is whether every group is sofic.

Helfgott and Juschenko argued that a celebrated group constructed by Higman is unlikely to be sofic because its soficity would imply the existence of some seemingly pathological functions. I will describe joint work with Martin Kassabov and Vivian Kuperberg in which we construct variations on Higman's group and explore their soficity.

In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.

I will talk about a way of building graded Lie algebras from certain Heisenberg groups. The input for this construction arises naturally when studying families of algebraic curves, and we'll look at some examples in which Lie theory interacts with number theory in an illuminating way.