Forthcoming events in this series


Tue, 11 Mar 2025
14:00
L6

Gelfand--Kirillov dimension and mod p cohomology for quaternion algebras

Andrea Dotto
(King's College London)
Abstract

The Gelfand--Kirillov dimension is a classical invariant that measures the size of smooth representations of p-adic groups. It acquired particular relevance in the mod p Langlands program because of the work of  Breuil--Herzig--Hu--Morra--Schraen, who computed it for the mod p cohomology of GL_2 over totally real fields, and used it to prove several structural properties of the cohomology. In this talk, we will present a simplified proof of this result, which has the added benefit of working unchanged for nonsplit inner forms of GL_2. This is joint work with Bao V. Le Hung.

Tue, 11 Mar 2025
12:00
C4

Non-commutative derived geometry

Federico Bambozzi
(University of Padova)
Abstract

I will describe a non-commutative version of the Zariski topology and explain how to use it to produce a functorial spectrum for all derived rings. If time permits I will give some examples and show how a weak form of Gelfand duality for non-commutative rings can be deduced from this. This work is in collaboration with Simone Murro and Matteo Capoferri.

Tue, 04 Mar 2025
14:00
L6

Prosoluble subgroups of the profinite completion of 3-manifold groups

Pavel Zalesski
(University of Brasilia)
Abstract

In recent years there has been a great deal of interest in detecting properties of the fundamental group $\pi_1M$ of a $3$-manifold via its finite quotients, or more conceptually by its profinite completion.

This motivates the study of the profinite completion $\widehat {\pi_1M}$ of the fundamental group of a $3$-manifold. I shall discuss a description of the  finitely generated prosoluble subgroups of the profinite completions of all 3-manifold groups and of related groups of geometric nature.

Tue, 25 Feb 2025
14:00
L6

Nakajima quiver varieties in dimension 4

Pavel Shlykov
(University of Glasgow)
Abstract

Nakajima quiver varieties form an important class of examples of conical symplectic singularities. For example, such varieties of dimension 2 are Kleinian singularities. Starting from this, I will describe a combinatorial approach to classifying the next case, affine quiver varieties of dimension 4. If time permits, I will try to say the implications we obtained and how can one compute the number of crepant symplectic resolutions of these varieties. This is a joint project with Samuel Lewis.

Tue, 18 Feb 2025
14:00
L6

On a geometric dimension growth conjecture

Yotam Hendel
(Ben Gurion University of the Negev)
Abstract

Let X be an integral projective variety of degree at least 2 defined over Q, and let B>0 an integer. The dimension growth conjecture, now proven in almost all cases following works of Browning, Heath-Brown, and Salberger, provides a certain uniform upper bound on the number of rational points of height at most B lying on X. 

Shifting to the geometric setting (where X may be defined over C(t)), the collection of C(t)-rational points lying on X of degree at most B naturally has the structure of an algebraic variety, which we denote by X(B). In ongoing work with Tijs Buggenhout and Floris Vermeulen, we uniformly bound the dimension and, when the degree of X is at least 6, the number of irreducible components  of X(B) of largest possible dimension​ analogously to dimension growth bounds. We do this by developing a geometric determinant method, and by using results on rational points on curves over function fields. 

Joint with Tijs Buggenhout and Floris Vermeulen.

Tue, 11 Feb 2025
14:00
L6

Distribution of powers of random unitary matrices through singularities of hyperplane arrangements

Itay Glazer
(Technion - Israel Institute of Technology)
Abstract

Let X be a n by n unitary matrix, drawn at random according to the Haar measure on U_n, and let m be a natural number. What can be said about the distribution of X^m and its eigenvalues? 

The density of the distribution \tau_m of X^m can be written as a linear combination of irreducible characters of U_n, where the coefficients are the Fourier coefficients of \tau_m. In their seminal work, Diaconis and Shahshahani have shown that for any fixed m, the sequence (tr(X),tr(X^2),...,tr(X^m)) converges, as n goes to infinity, to m independent complex normal random variables (suitably normalized). This can be seen as a statement about the low-dimensional Fourier coefficients of \tau_m. 

In this talk, I will focus on high-dimensional spectral information about \tau_m. For example: 

(a) Can one give sharp estimates on the rate of decay of its Fourier coefficients?

(b) For which values of p, is the density of \tau_m  L^p-integrable? 

Using works of Rains about the distribution of X^m, we will see how Item (a) is equivalent to a branching problem in the representation theory of certain compact homogeneous spaces, and how (b) is equivalent to a geometric problem about the singularities of certain varieties called (Weyl) hyperplane arrangements.

 

Based on joint works with Julia Gordon and Yotam Hendel and with Nir Avni and Michael Larsen.

Tue, 04 Feb 2025
10:00
L4

Twisting Higgs modules and applications to the p-adic Simpson correspondence I (special time!)

Ahmed Abbes
(IHES)
Abstract

In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.

The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety.  A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.

Tue, 28 Jan 2025
14:00
L6

Categorical valuations for polytopes and matroids

Nicholas Proudfoot
(All Souls, University of Oxford Visiting Fellow)
Abstract

Valulations (of polytopes or matroids) are very useful and very mysterious. After taking some time to explain this concept, I will categorify it, with the aim of making it both more useful and less mysterious.

Tue, 21 Jan 2025

14:00 - 15:00
L6

Proof of the Deligne—Milnor conjecture

Dario Beraldo
(UCL)
Abstract

Let X --> S be a family of algebraic varieties parametrized by an infinitesimal disk S, possibly of mixed characteristic. The Bloch conductor conjecture expresses the difference of the Euler characteristics of the special and generic fibers in algebraic and arithmetic terms. I'll describe a proof of some new cases of this conjecture, including the case of isolated singularities. The latter was a conjecture of Deligne generalizing Milnor's formula on vanishing cycles. 

This is joint work with Massimo Pippi; our methods use derived and non-commutative algebraic geometry. 

Tue, 03 Dec 2024
14:00
L6

Hyperbolic intersection arrangements

Samuel Lewis
((University of Oxford))
Abstract

Consider a connected graph and choose a subset of its vertices. From this simple setup, Iyama and Wemyss define a collection of real hyperplanes known as an intersection arrangement, going on to classify all tilings of the affine plane that arise in this way. These "local" generalisations of Coxeter combinatorics also admit a nice wall-crossing structure via Dynkin involutions and longest Weyl elements. In this talk I give an analogous classification in the hyperbolic setting using the data of an "overextended" ADE diagram with three distinguished vertices. I then discuss ongoing work applying intersection arrangements to parametrise notions of stability conditions for preprojective algebras.

Fri, 29 Nov 2024

12:00 - 13:00
C5

On Lusztig’s local Langlands correspondence and functoriality

Emile Okada
(National University of Singapore)
Abstract

In ’95 Lusztig gave a local Langlands correspondence for unramified representations of inner to split adjoint groups combining many deep results from type theory and geometric representation theory. In this talk, I will present a gentle reformulation of his construction revealing some interesting new structures, and with a view toward proving functoriality results in this framework. 

This seminar is organised jointly with the Junior Algebra and Representation Theory Seminar - all are very welcome!

Tue, 26 Nov 2024
14:00
L6

Probabilistic laws on groups

Guy Blachar
(Weizmann Institute)
Abstract

Suppose a finite group satisfies the following property: If you take two random elements, then with probability bigger than 5/8 they commute. Then this group is commutative. 

Starting from this well-known result, it is natural to ask: Do similar results hold for other laws (p-groups, nilpotent groups...)? Are there analogous results for infinite groups? Are there phenomena specific to the infinite setup? 

We will survey known and new results in this area. New results are joint with Gideon Amir, Maria Gerasimova and Gady Kozma.

Tue, 12 Nov 2024

14:00 - 15:00
C3

Blocks of modular representations of p-adic groups

Shaun Stevens
(UEA)
Abstract

Let G be the points of a reductive group over a p-adic field. According to Bernstein, the category of smooth complex representations of G decomposes as a product of indecomposable subcategories (blocks), each determined by inertial supercuspidal support. Moreover, each of these blocks is equivalent to the category of modules over a Hecke algebra, which is understood in many (most) cases. However, when the coefficients of the representations are now allowed to be in a more general ring (in which p is invertible), much of this fails in general. I will survey some of what is known, and not known.

Tue, 05 Nov 2024
14:00
L6

Degenerate Representations of GL_n over a p-adic field

Johannes Girsch
(University of Sheffield)
Abstract

Smooth generic representations of $GL_n$ over a $p$-adic field $F$, i.e. representations admitting a nondegenerate Whittaker model, are an important class of representations, for example in the setting of Rankin-Selberg integrals. However, in recent years there has been an increased interest in non-generic representations and their degenerate Whittaker models. By the theory of Bernstein-Zelevinsky derivatives we can associate to each smooth irreducible representation of $GL_n(F)$ an integer partition of $n$, which encodes the "degeneracy" of the representation. By using these "highest derivative partitions" we can define a stratification of the category of smooth complex representations and prove the surprising fact that all of the strata categories are equivalent to module categories over commutative rings. This is joint work with David Helm.

Tue, 29 Oct 2024

14:00 - 15:00
L6

Endomorphisms of Gelfand—Graev representations

Jack G Shotton
(University of Durham)
Abstract

Let G be a reductive group over a finite field F of characteristic p. I will present work with Tzu-Jan Li in which we determine the endomorphism algebra of the Gelfand-Graev representation of the finite group G(F) where the coefficients are taken to be l-adic integers, for l a good prime of G distinct from p. Our result can be viewed as a finite-field analogue of the local Langlands correspondence in families. 

Tue, 22 Oct 2024

14:00 - 15:00
L6

A recursive formula for plethysm coefficients and some applications

Stacey Law
(University of Birmingham)
Abstract

Plethysms lie at the intersection of representation theory and algebraic combinatorics. We give a recursive formula for a family of plethysm coefficients encompassing those involved in Foulkes' Conjecture. We also describe some applications, such as to the stability of plethysm coefficients and Sylow branching coefficients for symmetric groups. This is joint work with Y. Okitani.

Tue, 15 Oct 2024
14:30
L6

Undergraduate Summer Project Presentations: Computational experiments in the restricted universal enveloping algebra of sl 2

Joel Thacker
((University of Oxford))
Abstract

The problem of finding an explicit description of the centre of the restricted universal enveloping algebra of sl2 for a general prime characteristic p is still open. We use a computational approach to find a basis for the centre for small p. Building on this, we used a special central element t to construct a complete set of (p+1)/2 orthogonal primitive idempotents e_i, which decompose Z into one 1-dimensional and (p-1)/2 3-dimensional subspaces e_i Z. These allow us to compute e_i N as subspaces of the e_i Z, where N is the largest nilpotent ideal of Z. Looking forward, the results perhaps suggest N is a free k[T] / (T^{(p-1)/2}-1)-module of rank 2.

Tue, 15 Oct 2024
14:00
L6

Undergraduate Summer Project Presentations: Spin Representations for Coxeter Groups and Generalised Saxl Conjecture

Yutong Chen, University of Cambridge, Li Gu, University of Oxford, and William Osborne, University of Oxford
Abstract

A well-known open problem for representations of symmetric groups is the Saxl conjecture. In this talk, we put Saxl's conjecture into a Lie-theoretical framework and present a natural generalisation to Weyl groups. After giving necessary preliminaries on spin representations and the Springer correspondence, we present our progress on the generalised conjecture. Next, we reveal connections to tensor product decomposition problems in symmetric groups and provide an alternative description of Lusztig’s cuspidal families. Finally, we propose a further generalisation to all finite Coxeter groups.

Mon, 26 Aug 2024

14:00 - 15:00
L6

Analytic K-theory for bornological spaces

Devarshi Mukherjee
(University of Münster)
Abstract

We define a version of algebraic K-theory for bornological algebras, using the recently developed continuous K-theory by Efimov. In the commutative setting, we prove that this invariant satisfies descent for various topologies that arise in analytic geometry, generalising the results of Thomason-Trobaugh for schemes. Finally, we prove a version of the Grothendieck-Riemann-Roch Theorem for analytic spaces. Joint work with Jack Kelly and Federico Bambozzi. 

Tue, 11 Jun 2024

14:00 - 15:00
L5

Decision problems in one-relation semigroups

Carl-Fredrik Nyberg Brodda
(KIAS)
Abstract

I will give an overview and introduction to the most important decision problems in combinatorial semigroup theory, including the word problem, and describe attempts to solve a problem that has been open since 1914: the word problem in one-relation semigroups. I will link it with some of my results from formal language theory, as well as recent joint work with I. Foniqi and R. D. Gray (East Anglia) on proving undecidability of certain harder problems, proved by way of passing via one-relator groups.

Tue, 04 Jun 2024

14:00 - 15:00
L5

Geometrisation of the Langlands correspondence

James Newton
(University of Oxford)
Abstract

I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!

Tue, 21 May 2024

14:00 - 15:00
L5

Spin link homology and webs in type B

Elijah Bodish
(MIT)
Abstract

In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.

This is based on joint work in progress with Ben Elias and David Rose.

Tue, 14 May 2024

14:00 - 15:00
L5

Deformations of q-symmetric algebras and log symplectic varieties

Travis Schedler
(Imperial College, London)
Abstract

We consider quadratic deformations of the q-symmetric algebras A_q given by x_i x_j = q_{ij} x_j x_i, for q_{ij} in C*.   We explicitly describe the Hochschild cohomology and compute the weights of the torus action (dilating the x_i variables). We describe new families of filtered deformations of A_q, which are Koszul and Calabi—Yau algebras. This also applies to abelian category deformations of coh(P^n), and for n=3 we give examples having no homogeneous coordinate ring.  We then focus on the case where n is even and the deformations are obtainable from deformation quantisation of toric log symplectic structures on P^n.  In this case we construct formally universal families of quadratic algebras deforming A_q, obtained by tensoring filtered deformations and FeiginOdesskii elliptic algebras. The universality is a consequence of a beautiful combinatorial classification of deformations via "smoothing diagrams", a collection of disjoint cycles and segments in the complete graph on n vertices, viewed as the dual complex for the coordinate hyperplanes in P^{n-1}.  Already for n=5 there are 40 of these, mostly entirely new. Our proof also applies to deformations of Poisson structures, recovering the P^n case of our previous results on general log symplectic varieties with normal crossings divisors, which motivated this project.  This is joint work with Mykola Matviichuk and Brent Pym.

Tue, 07 May 2024

14:00 - 15:00
L5

Using hyperbolic Coxeter groups to construct highly regular expander graphs

Francois Thilmany
(UC Louvain)
Abstract

A graph $X$ is defined inductively to be $(a_0, . . . , a_{n−1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius 1 around $v$ is an $(a_1, . . . , a_{n−1})$-regular graph. A family $F$ of graphs is said to be an expander family if there is a uniform lower bound on the Cheeger constant of all the graphs in $F$. 

After briefly (re)introducing Coxeter groups and their geometries, we will describe how they can be used to construct very regular polytopes, which in turn can yield highly regular graphs. We will then use the super-approximation machinery, whenever the Coxeter group is hyperbolic, to obtain the expansion of these families of graphs. As a result, we obtain interesting infinite families of highly regular expander graphs, some of which are related to the exceptional groups. 

The talk is based on work joint with Conder, Lubotzky, and Schillewaert.