Forthcoming events in this series


Tue, 11 Nov 2025
14:00
L6

On the Local Converse Theorem for Depth $\frac{1}{N}$ Supercuspidal Representations of $\text{GL}(2N, F)$.

David Luo
Abstract

In this talk, David Luo will use type theory to construct a family of depth $\frac{1}{N}$ minimax supercuspidal representations of $p$-adic $\text{GL}(2N, F)$ which we call \textit{middle supercuspidal representations}. These supercuspidals may be viewed as a natural generalization of simple supercuspidal representations, i.e. those supercuspidals of minimal positive depth. Via explicit computations of twisted gamma factors, David will show that middle supercuspidal representations may be uniquely determined through twisting by quasi-characters of $F^{\times}$ and simple supercuspidal representations of $\text{GL}(N, F)$. Furthermore, David poses a conjecture which refines the local converse theorem for general supercuspidal representations of $\text{GL}(n, F)$.

Tue, 04 Nov 2025
14:00
L6

Stacks in Derived Bornological Geometry

Rhiannon Savage
(UCL )
Abstract

Recent foundational work by Ben-Bassat, Kelly, and Kremnitzer describes a model for derived analytic geometry as homotopical geometry relative to the infinity category of simplicial commutative complete bornological rings. In this talk, Rhiannon Savage will discuss a representability theorem for derived stacks in these contexts and will set out some new foundations for derived smooth geometry. Rhiannon will also briefly discuss the representability of the derived moduli stack of non-linear elliptic partial differential equations by an object we call a derived C∞-bornological affine scheme.

Tue, 28 Oct 2025
14:00
L6

The representation type of a finite tensor category

Petter Bergh
(NTNU)
Abstract

A finite tensor category is a suitably nice abelian category with a compatible monoidal structure. It makes perfect sense to define the representation type of such a category, as a measure of how complicated the category is in terms of its indecomposable objects. For example, finite representation type means that the category contains only finitely many indecomposable objects, up to isomorphism.  

In this talk from Petter Bergh, we shall see that if a finite tensor category has finitely generated cohomology, and the Krull dimension of its cohomology ring is at least three, then the category is of wild representation type. This is a report on recent joint work with K. Erdmann, J. Plavnik, and S. Witherspoon. 

Tue, 21 Oct 2025
14:00
L6

Profinite Rigidity, Noetherian Domains, and Solvable Groups

Julian Wykowski
(Cambridge)
Abstract

The question of profinite rigidity asks whether the isomorphism type of a group Γ can be recovered entirely from its finite quotients. In this talk, I will introduce the study of profinite rigidity in a different setting: the category of modules over a Noetherian domain Λ. I will explore properties of Λ-modules that can be detected in finite quotients and present two profinite rigidity theorems: one for free Λ-modules under a weak homological assumption on Λ, and another for all Λ-modules in the case when Λ is a Dedekind domain. Returning to groups, I will explain how these algebraic results yield new answers to profinite rigidity for certain classes of solvable groups. Time permitting, I will conclude with a sketch of future directions and ongoing collaborations that push these ideas further.

Tue, 14 Oct 2025
14:00
L6

The Laplace Transform on Lie Groups: A Representation-Theoretical Perspective

Ali Baklouti
(University of SFAX Tunisia)
Abstract

In this talk, I will present a representation-theoretical approach to constructing a non-commutative analogue of the classical Laplace transform on Lie groups. I will begin by discussing the motivations for such a generalization, emphasizing its connections with harmonic analysis, probability theory, and the study of evolution equations on non-commutative spaces. I will also outline some of the key challenges that arise when extending the Laplace transform to the setting of Lie groups, including the non-commutativity of the group operation and the complexity of its dual space.

The main part of the talk will focus on an explicit construction of the Laplace transform in the framework of connected, simply connected nilpotent Lie groups. This construction relies on Kirillov’s orbit method, which provides a powerful bridge between the geometry of coadjoint orbits and the representation theory of nilpotent groups.

As an application, I will describe an operator-theoretic analogue of the classical Müntz–Szász theorem, establishing a density result for a family of generalized polynomials in associated with the group setting. This result highlights the strength of the representation-theoretical approach and its potential for solving classical approximation problems in a non-commutative context.

Tue, 17 Jun 2025
14:00
L6

A Reconstruction Theorem for coadmissible D-cap-modules

Finn Wiersig
(National University of Singapore)
Abstract

Let X be a smooth rigid-analytic variety. Ardakov and Wadsley introduced the sheaf D-cap of infinite order differential operators on X, along with the category of coadmissible D-cap-modules. In this talk, we present a Riemann–Hilbert correspondence for these coadmissible D-cap-modules. Specifically, we interpret a coadmissible D-cap-module as a p-adic differential equation, explain what it means to solve such an equation, and describe how to reconstruct the module from its solutions.

Tue, 03 Jun 2025
14:00
L5

A geometric approach to Nichols algebras and their approximations

Giovanna Carnovale
(University of Padova)
Abstract

Nichols algebras, also known as small shuffle algebras, are a family of graded bialgebras including the symmetric algebras, the exterior algebras, the positive parts of quantized enveloping algebras, and, conjecturally, Fomin-Kirillov algebras. As the case of Fomin-Kirillov algebra shows, it can be very
difficult to determine the maximum degree of a minimal generating set of relations of a Nichols algebra. 

Building upon Kapranov and Schechtman’s equivalence between the category of perverse sheaves on Sym(C) and the category of graded connected bialgebras,  we describe the geometric counterpart of the maximum degree of a generating set of relations of a graded connected bialgebra, and we show how this specialises to the case o Nichols algebras.

The talk is based on joint work with Francesco Esposito and Lleonard Rubio y Degrassi.
 

Tue, 27 May 2025
14:00
L6

Differential graded algebras with entire functional calculus

Jon Pridham
(Edinburgh University)
Abstract

(EFC-DGAs) lead to an algebraic approach to derived analytic geometry, pioneered for more general Fermat theories by Carchedi and Roytenberg.
 
They are well-suited to modelling finite-dimensional analytic spaces, and classical theorems in analysis ensure they give a largely equivalent theory to Lurie's more involved approach via pregeometries. DG dagger affinoid spaces provide a well-behaved class of geometric building blocks whose homotopy theory is governed by the underlying EFC-DGAs. 

Time permitting, I might also say a little about non-commutative generalisations.
 

Tue, 20 May 2025
15:00
L6

Cohomology of subgroups of SL2

Henrique Souza
(Universidad Autonoma de Madrid)
Abstract

Given an FP-infinity subgroup G of SL(2,C), we are interested in the asymptotic behavior of the cohomology of G with coefficients in an irreducible complex representation V of SL(2,C). We prove that, as the dimension of V grows, the dimensions of these cohomology groups approximate the L2-Betti numbers of G. We make no further assumptions on G, extending a previous result of W. Fu. This yields a new method to compute those Betti numbers for finitely generated hyperbolic 3-manifold groups. We will give a brief idea of the proof, whose main tool is a completion of the universal enveloping algebra of the p-adic Lie algebra sl(2, Zp).

Tue, 20 May 2025
14:00
L6

Dehn functions of Bestvina--Brady groups

Matteo Migliorini
(Karlsruhe Institute of Technology)
Abstract

Bestvina--Brady groups were first introduced by Bestvina and Brady for their interesting finiteness properties. In this talk, we discuss their Dehn functions, that are a notion of isoperimetric inequality for finitely presented groups and can be thought of as a "quantitative version" of finite presentability. A result of Dison shows that the Dehn function of a Bestvina--Brady group is always bounded above by a quartic polynomial.

Our main result is to compute the Dehn function for all finitely presented Bestvina--Brady groups. In particular, we show that the Dehn function of a Bestvina--Brady group grows as a polynomial of integer degree, and we present the combinatorial criteria on the graph that determine whether the Dehn functions of the associated Bestvina--Brady group is linear, quadratic, cubic, or quartic.

This is joint work with Chang and García-Mejía.

Tue, 13 May 2025
14:00
L6

Stacky interpretation of D-cap modules

Arun Soor
(University of Oxford)
Abstract

I will construct a fully-faithful functor from the category of co-admissible D-cap modules of Ardakov—Wadsley, to the category of quasi-coherent sheaves on the "analytic de Rham space”, at least in the case when the rigid variety is affinoid and étale over a polydisk. 

Tue, 29 Apr 2025
14:00
L6

On the mod-$p$ cohomology of certain $p$-saturable groups.

Konstantin Ardakov
(University of Oxford)
Abstract

The mod-$p$ cohomology of uniform pro-$p$ groups has been calculated by Lazard in the 1960s. Motivated by recent considerations in the mod-$p$ Langlands program, we consider the problem of extending his results to the case of compact $p$-adic Lie groups $G$ that are $p$-saturable but not necessarily uniform pro-$p$: when $F$ is a finite extension of $\mathbb{Q}_p$ and $p$ is sufficiently large, this class of groups includes the so-called pro-$p$ Iwahori subgroups of $SL_n(F)$. In general, there is a spectral sequence due to Serre and Lazard that relates the mod-$p$ cohomology of $G$ to the cohomology of its associated graded mod-$p$ Lie algebra $\mathfrak{g}$. We will discuss certain sufficient conditions on $p$ and $G$ that ensure that this spectral sequence collapses. When these conditions hold, it follows that the mod-$p$ cohomology of $G$ is isomorphic to the cohomology of the Lie algebra $\mathfrak{g}$.

Tue, 22 Apr 2025
14:00
L4

Minimal degenerations for quiver varieties

Gwyn Bellamy
(University of Glasgow)
Abstract

For any symplectic singularity, one can consider the minimal degenerations between symplectic leaves - these are the relative singularities of a pair of adjacent leaves in the closure relation. I will describe a complete classification of these minimal degenerations for Nakajima quiver varieties. It provides an effective algorithm for computing the associated Hesse diagrams. In the physics literature, it is known that this Hasse diagram can be computed using quiver subtraction. Our results appear to recover this process. I will explain applications of our results to the question of normality of leaf closures in quiver varieties. The talk is based on joint work in progress with Travis Schedler.

Tue, 11 Mar 2025
14:00
L6

Gelfand--Kirillov dimension and mod p cohomology for quaternion algebras

Andrea Dotto
(King's College London)
Abstract

The Gelfand--Kirillov dimension is a classical invariant that measures the size of smooth representations of p-adic groups. It acquired particular relevance in the mod p Langlands program because of the work of  Breuil--Herzig--Hu--Morra--Schraen, who computed it for the mod p cohomology of GL_2 over totally real fields, and used it to prove several structural properties of the cohomology. In this talk, we will present a simplified proof of this result, which has the added benefit of working unchanged for nonsplit inner forms of GL_2. This is joint work with Bao V. Le Hung.

Tue, 11 Mar 2025
12:00
C4

Non-commutative derived geometry

Federico Bambozzi
(University of Padova)
Abstract

I will describe a non-commutative version of the Zariski topology and explain how to use it to produce a functorial spectrum for all derived rings. If time permits I will give some examples and show how a weak form of Gelfand duality for non-commutative rings can be deduced from this. This work is in collaboration with Simone Murro and Matteo Capoferri.

Tue, 04 Mar 2025
14:00
L6

Prosoluble subgroups of the profinite completion of 3-manifold groups

Pavel Zalesski
(University of Brasilia)
Abstract

In recent years there has been a great deal of interest in detecting properties of the fundamental group $\pi_1M$ of a $3$-manifold via its finite quotients, or more conceptually by its profinite completion.

This motivates the study of the profinite completion $\widehat {\pi_1M}$ of the fundamental group of a $3$-manifold. I shall discuss a description of the  finitely generated prosoluble subgroups of the profinite completions of all 3-manifold groups and of related groups of geometric nature.

Tue, 25 Feb 2025
14:00
L6

Nakajima quiver varieties in dimension 4

Pavel Shlykov
(University of Glasgow)
Abstract

Nakajima quiver varieties form an important class of examples of conical symplectic singularities. For example, such varieties of dimension 2 are Kleinian singularities. Starting from this, I will describe a combinatorial approach to classifying the next case, affine quiver varieties of dimension 4. If time permits, I will try to say the implications we obtained and how can one compute the number of crepant symplectic resolutions of these varieties. This is a joint project with Samuel Lewis.

Tue, 18 Feb 2025
14:00
L6

On a geometric dimension growth conjecture

Yotam Hendel
(Ben Gurion University of the Negev)
Abstract

Let X be an integral projective variety of degree at least 2 defined over Q, and let B>0 an integer. The dimension growth conjecture, now proven in almost all cases following works of Browning, Heath-Brown, and Salberger, provides a certain uniform upper bound on the number of rational points of height at most B lying on X. 

Shifting to the geometric setting (where X may be defined over C(t)), the collection of C(t)-rational points lying on X of degree at most B naturally has the structure of an algebraic variety, which we denote by X(B). In ongoing work with Tijs Buggenhout and Floris Vermeulen, we uniformly bound the dimension and, when the degree of X is at least 6, the number of irreducible components  of X(B) of largest possible dimension​ analogously to dimension growth bounds. We do this by developing a geometric determinant method, and by using results on rational points on curves over function fields. 

Joint with Tijs Buggenhout and Floris Vermeulen.

Tue, 11 Feb 2025
14:00
L6

Distribution of powers of random unitary matrices through singularities of hyperplane arrangements

Itay Glazer
(Technion - Israel Institute of Technology)
Abstract

Let X be a n by n unitary matrix, drawn at random according to the Haar measure on U_n, and let m be a natural number. What can be said about the distribution of X^m and its eigenvalues? 

The density of the distribution \tau_m of X^m can be written as a linear combination of irreducible characters of U_n, where the coefficients are the Fourier coefficients of \tau_m. In their seminal work, Diaconis and Shahshahani have shown that for any fixed m, the sequence (tr(X),tr(X^2),...,tr(X^m)) converges, as n goes to infinity, to m independent complex normal random variables (suitably normalized). This can be seen as a statement about the low-dimensional Fourier coefficients of \tau_m. 

In this talk, I will focus on high-dimensional spectral information about \tau_m. For example: 

(a) Can one give sharp estimates on the rate of decay of its Fourier coefficients?

(b) For which values of p, is the density of \tau_m  L^p-integrable? 

Using works of Rains about the distribution of X^m, we will see how Item (a) is equivalent to a branching problem in the representation theory of certain compact homogeneous spaces, and how (b) is equivalent to a geometric problem about the singularities of certain varieties called (Weyl) hyperplane arrangements.

 

Based on joint works with Julia Gordon and Yotam Hendel and with Nir Avni and Michael Larsen.

Tue, 04 Feb 2025
10:00
L4

Twisting Higgs modules and applications to the p-adic Simpson correspondence I (special time!)

Ahmed Abbes
(IHES)
Abstract

In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.

The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety.  A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.

Tue, 28 Jan 2025
14:00
L6

Categorical valuations for polytopes and matroids

Nicholas Proudfoot
(All Souls, University of Oxford Visiting Fellow)
Abstract

Valulations (of polytopes or matroids) are very useful and very mysterious. After taking some time to explain this concept, I will categorify it, with the aim of making it both more useful and less mysterious.

Tue, 21 Jan 2025

14:00 - 15:00
L6

Proof of the Deligne—Milnor conjecture

Dario Beraldo
(UCL)
Abstract

Let X --> S be a family of algebraic varieties parametrized by an infinitesimal disk S, possibly of mixed characteristic. The Bloch conductor conjecture expresses the difference of the Euler characteristics of the special and generic fibers in algebraic and arithmetic terms. I'll describe a proof of some new cases of this conjecture, including the case of isolated singularities. The latter was a conjecture of Deligne generalizing Milnor's formula on vanishing cycles. 

This is joint work with Massimo Pippi; our methods use derived and non-commutative algebraic geometry. 

Tue, 03 Dec 2024
14:00
L6

Hyperbolic intersection arrangements

Samuel Lewis
(University of Oxford)
Abstract

Consider a connected graph and choose a subset of its vertices. From this simple setup, Iyama and Wemyss define a collection of real hyperplanes known as an intersection arrangement, going on to classify all tilings of the affine plane that arise in this way. These "local" generalisations of Coxeter combinatorics also admit a nice wall-crossing structure via Dynkin involutions and longest Weyl elements. In this talk I give an analogous classification in the hyperbolic setting using the data of an "overextended" ADE diagram with three distinguished vertices. I then discuss ongoing work applying intersection arrangements to parametrise notions of stability conditions for preprojective algebras.

Fri, 29 Nov 2024

12:00 - 13:00
C5

On Lusztig’s local Langlands correspondence and functoriality

Emile Okada
(National University of Singapore)
Abstract

In ’95 Lusztig gave a local Langlands correspondence for unramified representations of inner to split adjoint groups combining many deep results from type theory and geometric representation theory. In this talk, I will present a gentle reformulation of his construction revealing some interesting new structures, and with a view toward proving functoriality results in this framework. 

This seminar is organised jointly with the Junior Algebra and Representation Theory Seminar - all are very welcome!

Tue, 26 Nov 2024
14:00
L6

Probabilistic laws on groups

Guy Blachar
(Weizmann Institute)
Abstract

Suppose a finite group satisfies the following property: If you take two random elements, then with probability bigger than 5/8 they commute. Then this group is commutative. 

Starting from this well-known result, it is natural to ask: Do similar results hold for other laws (p-groups, nilpotent groups...)? Are there analogous results for infinite groups? Are there phenomena specific to the infinite setup? 

We will survey known and new results in this area. New results are joint with Gideon Amir, Maria Gerasimova and Gady Kozma.

Tue, 12 Nov 2024

14:00 - 15:00
C3

Blocks of modular representations of p-adic groups

Shaun Stevens
(UEA)
Abstract

Let G be the points of a reductive group over a p-adic field. According to Bernstein, the category of smooth complex representations of G decomposes as a product of indecomposable subcategories (blocks), each determined by inertial supercuspidal support. Moreover, each of these blocks is equivalent to the category of modules over a Hecke algebra, which is understood in many (most) cases. However, when the coefficients of the representations are now allowed to be in a more general ring (in which p is invertible), much of this fails in general. I will survey some of what is known, and not known.

Tue, 05 Nov 2024
14:00
L6

Degenerate Representations of GL_n over a p-adic field

Johannes Girsch
(University of Sheffield)
Abstract

Smooth generic representations of $GL_n$ over a $p$-adic field $F$, i.e. representations admitting a nondegenerate Whittaker model, are an important class of representations, for example in the setting of Rankin-Selberg integrals. However, in recent years there has been an increased interest in non-generic representations and their degenerate Whittaker models. By the theory of Bernstein-Zelevinsky derivatives we can associate to each smooth irreducible representation of $GL_n(F)$ an integer partition of $n$, which encodes the "degeneracy" of the representation. By using these "highest derivative partitions" we can define a stratification of the category of smooth complex representations and prove the surprising fact that all of the strata categories are equivalent to module categories over commutative rings. This is joint work with David Helm.

Tue, 29 Oct 2024

14:00 - 15:00
L6

Endomorphisms of Gelfand—Graev representations

Jack G Shotton
(University of Durham)
Abstract

Let G be a reductive group over a finite field F of characteristic p. I will present work with Tzu-Jan Li in which we determine the endomorphism algebra of the Gelfand-Graev representation of the finite group G(F) where the coefficients are taken to be l-adic integers, for l a good prime of G distinct from p. Our result can be viewed as a finite-field analogue of the local Langlands correspondence in families. 

Tue, 22 Oct 2024

14:00 - 15:00
L6

A recursive formula for plethysm coefficients and some applications

Stacey Law
(University of Birmingham)
Abstract

Plethysms lie at the intersection of representation theory and algebraic combinatorics. We give a recursive formula for a family of plethysm coefficients encompassing those involved in Foulkes' Conjecture. We also describe some applications, such as to the stability of plethysm coefficients and Sylow branching coefficients for symmetric groups. This is joint work with Y. Okitani.

Tue, 15 Oct 2024
14:30
L6

Undergraduate Summer Project Presentations: Computational experiments in the restricted universal enveloping algebra of sl 2

Joel Thacker
(University of Oxford)
Abstract

The problem of finding an explicit description of the centre of the restricted universal enveloping algebra of sl2 for a general prime characteristic p is still open. We use a computational approach to find a basis for the centre for small p. Building on this, we used a special central element t to construct a complete set of (p+1)/2 orthogonal primitive idempotents e_i, which decompose Z into one 1-dimensional and (p-1)/2 3-dimensional subspaces e_i Z. These allow us to compute e_i N as subspaces of the e_i Z, where N is the largest nilpotent ideal of Z. Looking forward, the results perhaps suggest N is a free k[T] / (T^{(p-1)/2}-1)-module of rank 2.

Tue, 15 Oct 2024
14:00
L6

Undergraduate Summer Project Presentations: Spin Representations for Coxeter Groups and Generalised Saxl Conjecture

Yutong Chen, University of Cambridge, Li Gu, University of Oxford, and William Osborne, University of Oxford
Abstract

A well-known open problem for representations of symmetric groups is the Saxl conjecture. In this talk, we put Saxl's conjecture into a Lie-theoretical framework and present a natural generalisation to Weyl groups. After giving necessary preliminaries on spin representations and the Springer correspondence, we present our progress on the generalised conjecture. Next, we reveal connections to tensor product decomposition problems in symmetric groups and provide an alternative description of Lusztig’s cuspidal families. Finally, we propose a further generalisation to all finite Coxeter groups.

Mon, 26 Aug 2024

14:00 - 15:00
L6

Analytic K-theory for bornological spaces

Devarshi Mukherjee
(University of Münster)
Abstract

We define a version of algebraic K-theory for bornological algebras, using the recently developed continuous K-theory by Efimov. In the commutative setting, we prove that this invariant satisfies descent for various topologies that arise in analytic geometry, generalising the results of Thomason-Trobaugh for schemes. Finally, we prove a version of the Grothendieck-Riemann-Roch Theorem for analytic spaces. Joint work with Jack Kelly and Federico Bambozzi. 

Tue, 11 Jun 2024

14:00 - 15:00
L5

Decision problems in one-relation semigroups

Carl-Fredrik Nyberg Brodda
(KIAS)
Abstract

I will give an overview and introduction to the most important decision problems in combinatorial semigroup theory, including the word problem, and describe attempts to solve a problem that has been open since 1914: the word problem in one-relation semigroups. I will link it with some of my results from formal language theory, as well as recent joint work with I. Foniqi and R. D. Gray (East Anglia) on proving undecidability of certain harder problems, proved by way of passing via one-relator groups.

Tue, 04 Jun 2024

14:00 - 15:00
L5

Geometrisation of the Langlands correspondence

James Newton
(University of Oxford)
Abstract

I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!

Tue, 21 May 2024

14:00 - 15:00
L5

Spin link homology and webs in type B

Elijah Bodish
(MIT)
Abstract

In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.

This is based on joint work in progress with Ben Elias and David Rose.

Tue, 14 May 2024

14:00 - 15:00
L5

Deformations of q-symmetric algebras and log symplectic varieties

Travis Schedler
(Imperial College, London)
Abstract

We consider quadratic deformations of the q-symmetric algebras A_q given by x_i x_j = q_{ij} x_j x_i, for q_{ij} in C*.   We explicitly describe the Hochschild cohomology and compute the weights of the torus action (dilating the x_i variables). We describe new families of filtered deformations of A_q, which are Koszul and Calabi—Yau algebras. This also applies to abelian category deformations of coh(P^n), and for n=3 we give examples having no homogeneous coordinate ring.  We then focus on the case where n is even and the deformations are obtainable from deformation quantisation of toric log symplectic structures on P^n.  In this case we construct formally universal families of quadratic algebras deforming A_q, obtained by tensoring filtered deformations and FeiginOdesskii elliptic algebras. The universality is a consequence of a beautiful combinatorial classification of deformations via "smoothing diagrams", a collection of disjoint cycles and segments in the complete graph on n vertices, viewed as the dual complex for the coordinate hyperplanes in P^{n-1}.  Already for n=5 there are 40 of these, mostly entirely new. Our proof also applies to deformations of Poisson structures, recovering the P^n case of our previous results on general log symplectic varieties with normal crossings divisors, which motivated this project.  This is joint work with Mykola Matviichuk and Brent Pym.

Tue, 07 May 2024

14:00 - 15:00
L5

Using hyperbolic Coxeter groups to construct highly regular expander graphs

Francois Thilmany
(UC Louvain)
Abstract

A graph $X$ is defined inductively to be $(a_0, . . . , a_{n−1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius 1 around $v$ is an $(a_1, . . . , a_{n−1})$-regular graph. A family $F$ of graphs is said to be an expander family if there is a uniform lower bound on the Cheeger constant of all the graphs in $F$. 

After briefly (re)introducing Coxeter groups and their geometries, we will describe how they can be used to construct very regular polytopes, which in turn can yield highly regular graphs. We will then use the super-approximation machinery, whenever the Coxeter group is hyperbolic, to obtain the expansion of these families of graphs. As a result, we obtain interesting infinite families of highly regular expander graphs, some of which are related to the exceptional groups. 

The talk is based on work joint with Conder, Lubotzky, and Schillewaert. 

Tue, 30 Apr 2024

14:00 - 15:00
L5

Unipotent Representations and Mixed Hodge Modules

Lucas Mason-Brown
(Oxford University)
Abstract

One of the oldest open problems in representation theory is to classify the irreducible unitary representations of a semisimple Lie group G_R. Such representations play a fundamental role in harmonic analysis and the Langlands program and arise in physics as the state space of quantum mechanical systems in the presence of G_R-symmetry. Most unitary representations of G_R are realized, via some kind of induction, from unitary representations of proper Levi subgroups. Thus, the major obstacle to understanding the unitary dual of G_R is identifying the "non-induced" unitary representations of G_R. In previous joint work with Losev and Matvieievskyi, we have proposed a general construction of these non-induced representations, which we call "unipotent" representations of G_R. Unfortunately, the methods we employ do not provide a proof that these representations are unitary. In this talk, I will explain how one can apply Saito's theory of mixed Hodge modules to overcome this difficulty, giving a uniform proof of the unitarity of all unipotent representations. This is joint work in progress with Dougal Davis

Tue, 23 Apr 2024

14:00 - 15:00
L5

Symmetric spaces, where Topology meets Representation Theory

Dmitriy Rumynin
(University of Warwick)
Abstract

We will use Representation Theory to calculate systematically and efficiently the topological invariants of compact Lie groups and homogeneous spaces.
 

Most of the talk is covered by our second paper on ArXiv with John Jones and Adam Thomas, who are both at Warwick. The paper is part of the ongoing project to study the topological invariants of the four exceptional Rosenfeld projective planes.

Tue, 12 Mar 2024

14:00 - 15:00
L3

A potpourri of pretty identities involving Catalan, Fibonacci and trigonometric numbers

Enoch Suleiman
(Federal University Gashua)
Abstract

Apart from the binomial coefficients which are ubiquitous in many counting problems, the Catalan and Fibonacci sequences seem to appear almost as frequently. There are also well-known interpretations of the Catalan numbers as lattice paths, or as the number of ways of connecting 2n points on a circle via non-intersecting lines. We start by obtaining some identities for sums involving the Catalan sequence. In addition, we use the beautiful binomial transform which allows us to obtain several pretty identities involving Fibonacci numbers, Catalan numbers, and trigonometric sums.

Tue, 05 Mar 2024

14:00 - 15:00
L5

Complex crystallographic groups and Seiberg--Witten integrable systems

Oleg Chalykh
(University of Leeds)
Abstract

For any smooth complex variety Y with an action of a finite group W, Etingof defines the global Cherednik algebra H_c and its spherical subalgebra B_c as certain sheaves of algebras over Y/W. When Y is an n-dimensional abelian variety, the algebra of global sections of B_c is a polynomial algebra on n generators, as shown by Etingof, Felder, Ma, and Veselov. This defines an integrable system on Y. In the case of Y being a product of n copies of an elliptic curve E and W=S_n, this reproduces the usual elliptic Calogero­­--Moser system. Recently, together with P. Argyres and Y. Lu, we proposed that many of these integrable systems at the classical level can be interpreted as Seiberg­­--Witten integrable systems of certain super­symmetric quantum field theories. I will describe our progress in understanding this connection for groups W=G(m, 1, n), corresponding to the case Y=E^n where E is an elliptic curves with Z_m symmetry, m=2,3,4,6. 

Tue, 27 Feb 2024

14:00 - 15:00
L5

Modular Reduction of Nilpotent Orbits

Jay Taylor
(University of Manchester)
Abstract

Suppose 𝐺𝕜 is a connected reductive algebraic 𝕜-group where 𝕜 is an algebraically closed field. If 𝑉𝕜 is a 𝐺𝕜-module then, using geometric invariant theory, Kempf has defined the nullcone 𝒩(𝑉𝕜) of 𝑉𝕜. For the Lie algebra 𝔤𝕜 = Lie(𝐺𝕜), viewed as a 𝐺𝕜-module via the adjoint action, we have 𝒩(𝔤𝕜) is precisely the set of nilpotent elements.

We may assume that our group 𝐺𝕜 = 𝐺 × 𝕜 is obtained by base-change from a suitable ℤ-form 𝐺. Suppose 𝑉 is 𝔤 = Lie(G) or its dual 𝔤* = Hom(𝔤, ℤ) which are both modules for 𝐺, that are free of finite rank as ℤ-modules. Then 𝑉 ⨂ 𝕜, as a module for 𝐺𝕜, is 𝔤𝕜 or 𝔤𝕜* respectively.

It is known that each 𝐺 -orbit 𝒪 ⊆ 𝒩(𝑉) contains a representative ξ ∈ 𝑉 in the ℤ-form. Reducing ξ one gets an element ξ𝕜 ∈ 𝑉𝕜 for any algebraically closed 𝕜. In this talk, we will explain two ways in which we might want ξ to have “good reduction” and how one can find elements with these properties. We will also discuss the relationship to Lusztig’s special orbits.

This is on-going joint work with Adam Thomas (Warwick).

Tue, 20 Feb 2024

14:00 - 15:00
L5

Faithfulness of highest-weight modules for Iwasawa algebras

Stephen Mann
(University of Cambridge)
Abstract

Iwasawa algebras are completions of group algebras for p-adic Lie groups, and have applications for studying the representations of these groups. It is an ongoing project to study the prime ideals, and more generally the two-sided ideals, of these algebras.

In the case of Iwasawa algebras corresponding to a simple Lie algebra with a Chevalley basis, we aim to prove that all non-zero two-sided ideals have finite codimension. To prove this, it is sufficient to show faithfulness of modules arising from highest-weight modules for the corresponding Lie algebra.

I have proved two main results in this direction: firstly, I proved the faithfulness of generalised Verma modules over the Iwasawa algebra. Secondly, I proved the faithfulness of all infinite-dimensional highest-weight modules in the case where the Lie algebra has type A. In this talk, I will outline the methods I used to prove these cases.

Tue, 13 Feb 2024

14:00 - 15:00
L5

Functional Calculus, Bornological Algebra, and Analytic Geometry

Jack Kelly
(University of Oxford)
Abstract

Porta and Yue Yu's model of derived analytic geometry takes as its category of basic, or affine, objects the category opposite to simplicial algebras over the entire functional calculus Lawvere theory. This is analogous to Lurie's approach to derived algebraic geometry where the Lawvere theory is the one governing simplicial commutative rings, and Spivak's derived smooth geometry, using the Lawvere theory of C-infinity-rings. Although there have been numerous important applications including GAGA, base-change, and Riemann-Hilbert theorems, these methods are still missing some crucial ingredients. For example, they do not naturally beget a good definition of quasi-coherent sheaves satisfying descent. On the other hand, the Toen-Vezzosi-Deligne approach of geometry relative to a symmetric monoidal category naturally provides a definition of a category of quasi-coherent sheaves, and in two such approaches to analytic geometry using the categories of bornological and condensed abelian groups respectively, these categories do satisfy descent.  In this talk I will explain how to compare the Porta and Yue Yu model of derived analytic geometry with the bornological one. More generally we give conditions on a Lawvere theory such that its simplicial algebras embed fully faithfully into commutative bornological algebras. Time permitting I will show how the Grothendieck topologies on both sides match up, allowing us to extend the embedding to stacks.

This is based on joint work with Oren Ben-Bassat and Kobi Kremnitzer, and follows work of Kremnitzer and Dennis Borisov.

Sun, 11 Feb 2024
14:00
L5

TBA

Itay Glazer
(Technion - Israel Institute of Technology)
Sun, 11 Feb 2024
14:00
L6

TBC

Itay Glazer
(Technion - Israel Institute of Technology)
Abstract

to follow

Tue, 30 Jan 2024

14:00 - 15:00
L5

Equivariant vector bundles with connection on the p-adic half-plane

Simon Wadsley
(University of Cambridge)
Abstract

Recent joint work with Konstantin Ardakov has been devoted to classifying equivariant line bundles with flat connection on the Drinfeld p-adic half-plane defined over F, a finite extension of Q_p, and proving that their global sections yield admissible locally analytic representations of GL_2(F) of finite length. In this talk we will discuss this work and invite reflection on how it might be extended to equivariant vector bundles with connection on the p-adic half-plane and, if time permits, to higher dimensional analogues of the half-plane.

Tue, 23 Jan 2024

14:00 - 15:00
L5

On a quantitative version of Harish-Chandra's regularity theorem and singularities of representations

Yotam Hendel
(KU Leuven)
Abstract

Let G be a reductive group defined over a local field of characteristic 0 (real or p-adic). By Harish-Chandra’s regularity theorem, the character Θ_π of an irreducible representation π of G is given by a locally integrable function f_π on G. It turns out that f_π has even better integrability properties, namely, it is locally L^{1+r}-integrable for some r>0. This gives rise to a new singularity invariant of representations \e_π by considering the largest such r.

We explore \e_π, show it is bounded below only in terms of the group G, and calculate it in the case of a p-adic GL(n). To do so, we relate \e_π to the integrability of Fourier transforms of nilpotent orbital integrals appearing in the local character expansion of Θ_π. As a main technical tool, we use explicit resolutions of singularities of certain hyperplane arrangements. We obtain bounds on the multiplicities of K-types in irreducible representations of G for a p-adic G and a compact open subgroup K.

Based on a joint work with Itay Glazer and Julia Gordon.

Tue, 05 Dec 2023

14:00 - 15:00
L6

Representation type of cyclotomic quiver Hecke algebras

Qi Wang
(Tsinghua University)
Abstract

One of the fundamental problems in representation theory is determining the representation type of algebras. In this talk, we will introduce the representation type of cyclotomic quiver Hecke algebras, also known as cyclotomic Khovanov-Lauda-Rouquier algebras, especially in affine type A and affine type C. Our main result relies on novel constructions of the maximal dominant weights of integrable highest weight modules over quantum groups. This talk is based on collaborations with Susumu Ariki, Berta Hudak, and Linliang Song.