Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.


Past events in this series

Mon, 24 Jun 2024

15:00 - 16:00

Self-similar k-graph C*-algebras

Dilian Yang
(University of Windsor)

A self-similar k-graph is a pair consisting of a (discrete countable) group and a k-graph, such that the group acts on the k-graph self-similarly. For such a pair, one can associate it with a universal C*-algebra, called the self-similar k-graph C*-algebra. This class of C*-algebras embraces many important and interesting C*-algebras,  such as the higher rank graph C*-algebras of Kumjian-Pask, the Katsura algebras,  the Nekrashevych algebras constructed from self-similar groups, and the Exel-Pardo algebra. 

In this talk, we will survey some results on self-similar k-graph C*-algebras. 

Thu, 27 Jun 2024

15:15 - 16:15

Cartan subalgebras of twisted groupoid $C^*$-algebras with a focus on $k$-graph $C^*$-algebras

Rachael Norton
(St Olaf College)

The set $M_n(\mathbb{R})$ of all $n \times n$ matrices over the real numbers is an example of an algebraic structure called a $C^*$-algebra. The subalgebra $D$ of diagonal matrices has special properties and is called a \emph{Cartan subalgebra} of $M_n(\mathbb{R})$. Given an arbitrary $C^*$-algebra, it can be very hard (but also very rewarding) to find a Cartan subalgebra, if one exists at all. However, if the $C^*$-algebra is generated by a cocycle $c$ and a group (or groupoid) $G$, then it is natural to look within $G$ for a subgroup (or subgroupoid) $S$ that may give rise to a Cartan subalgebra. In this talk, we identify sufficient conditions on $S$ and $c$ so that the subalgebra generated by $(S,c)$ is indeed a Cartan subalgebra of the $C^*$-algebra generated by $(G,c)$. We then apply our theorem to $C^*$-algebras generated by $k$-graphs, which are directed graphs in higher dimensions. This is joint work with J. Briones Torres, A. Duwenig, L. Gallagher, E. Gillaspy, S. Reznikoff, H. Vu, and S. Wright.

Thu, 27 Jun 2024

16:30 - 17:30

The Zappa–Szép product of groupoid twists

Anna Duwenig
(KU Leuven)

The Zappa–Szép (ZS) product of two groupoids is a generalization of the semi-direct product: instead of encoding one groupoid action by homomorphisms, the ZS product groupoid encodes two (non-homomorphic, but “compatible”) actions of the groupoids on each other. I will show how to construct the ZS product of two twists over such groupoidand give an example using Weyl twists from Cartan pairs arising from Kumjian--Renault theory.

 Based on joint work with Boyu Li, New Mexico State University

Fri, 28 Jun 2024

15:00 - 16:00

Permanence of Structural properties when taking crossed products

Dawn Archey
(University of Detroit Mercy)

 Structural properties of C*-Algebras such as Stable Rank One, Real Rank Zero, and radius of comparison have played an important role in classification.  Crossed product C*-Algebras are useful examples to study because knowledge of the base Algebra can be leveraged to determine properties of the crossed product.  In this talk we will discuss the permanence of various structural properties when taking crossed products of several types.  Crossed products considered will include the usual C* crossed product by a group action along with generalizations such as crossed products by a partial automorphism.  

This talk is based on joint work with Julian Buck and N. Christopher Phillips and on joint work with Maria Stella Adamo, Marzieh Forough, Magdalena Georgescu, Ja A Jeong, Karen Strung, and Maria Grazia Viola.

Tue, 02 Jul 2024

16:00 - 17:00
North Lecture Theatre, St John’s College Oxford


Jorge Castillejos Lopez
(UNAM Mexico)

to follow