### Self-similar k-graph C*-algebras

## Abstract

A self-similar k-graph is a pair consisting of a (discrete countable) group and a k-graph, such that the group acts on the k-graph self-similarly. For such a pair, one can associate it with a universal C*-algebra, called the self-similar k-graph C*-algebra. This class of C*-algebras embraces many important and interesting C*-algebras, such as the higher rank graph C*-algebras of Kumjian-Pask, the Katsura algebras, the Nekrashevych algebras constructed from self-similar groups, and the Exel-Pardo algebra.

In this talk, we will survey some results on self-similar k-graph C*-algebras.