Forthcoming events in this series


Tue, 21 May 2024

16:00 - 17:00
C2

Nuclear dimension of Cuntz-Krieger algebras associated with shift spaces

Sihan Wei
(University of Glasgow)
Abstract

Associated to every shift space, the Cuntz-Krieger algebra (C-K algebra for abbreviation) is an invariant of conjugacy defined and developed by K. Matsumoto, S. Eilers, T. Carlsen, and many of their collaborators in the last decade. In particular, Carlsen defined the C-K algebra to be the full groupoid C*-algebra of the “cover”, which is a topological system consisting of a surjective local homeomorphism on a zero-dimensional space induced by the shift space. 

In 2022, K. Brix proved that the C-K algebra of the Sturmian shift has finite nuclear dimension, where the Sturmian shift is the (unique) minimal shift space with the smallest complexity function: p_X(n)=n+1. In recent results (joint with Z. He), we show that for any minimal shift space with finitely many left special elements, its C-K algebra always have finite nuclear dimension. In fact, this can be further applied to the class of aperiodic shift spaces with non-superlinear growth complexity. 

Tue, 14 May 2024

16:00 - 17:00
C2

Non-isomorphic simple AH algebras with the same Elliott invariant and same radius of comparison

Ilan Hirshberg
(Ben-Gurion University of the Negev)
Abstract

Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.

Tue, 07 May 2024

16:00 - 17:00
C2

Title: $C^*$ -diagonal of Inductive limits of 1-dimensional Noncommutative CW-complexes

Dolapo Oyetunbi
(University of Ottawa)
Abstract

A $C^*$-diagonal is a certain commutative subalgebra of a $C^∗$ -algebra with a rich structure. Renault and Kumjian showed that finding a $C^*$ -diagonal of a $C^∗$-algebra is equivalent to realizing the $C^*$-algebra via a groupoid. This establishes a close connection between $C^∗$-diagonals and dynamics and allows one to relate the geometric properties of groupoids to the properties of $C^∗$ -diagonals. 

In this talk, I will explore the unique pure state extension property of an Abelian $C^*$-subalgebra of a 1-dim NCCW complex, the approximation of morphisms between two 1-dim NCCW complexes by $C^*$-diagonal preserving morphisms, and the existence of $C^*$-diagonal in inductive limits of certain 1-dim NCCW complexes.

Tue, 30 Apr 2024

16:00 - 17:00
C2

Equivariantly O2-stable actions: classification and range of the invariant

Matteo Pagliero
(KU Leuven)
Abstract

One possible version of the Kirchberg—Phillips theorem states that simple, separable, nuclear, purely infinite C*-algebras are classified by KK-theory. In order to generalize this result to non-simple C*-algebras, Kirchberg first restricted his attention to those that absorb the Cuntz algebra O2 tensorially. C*-algebras in this class carry no KK-theoretical information in a strong sense, and they are classified by their ideal structure alone. It should be mentioned that, although this result is in Kirchberg’s work, its full proof was first published by Gabe. In joint work with Gábor Szabó, we showed a generalization of Kirchberg's O2-stable theorem that classifies G-C*-algebras up to cocycle conjugacy, where G is any second-countable, locally compact group. In our main result, we assume that actions are amenable, sufficiently outer, and absorb the trivial action on O2 up to cocycle conjugacy. In very recent work, I moreover show that the range of the classification invariant, consisting of a topological dynamical system over primitive ideals, is exhausted for any second-countable, locally compact group.

In this talk, I will recall the classification of O2-stable C*-algebras, and describe their classification invariant. Subsequently, I will give a short introduction to the C*-dynamical working framework and present the classification result for equivariant O2-stable actions. Time permitting, I will give an idea of how one can build a C*-dynamical system in the scope of our classification with a prescribed invariant. 

Tue, 23 Apr 2024

16:00 - 17:00
C2

Gauge-invariant ideal structure of C*-algebras associated with strong compactly aligned product systems

Joseph Dessi
(Newcastle University)
Abstract

Product systems represent powerful contemporary tools in the study of mathematical structures. A major success in the theory came from Katsura (2007), who provided a complete description of the gauge-invariant ideals of many important C*-algebras arising from product systems over Z+. This result recaptures existing results from the literature, illustrating the versatility of product system theory. The question now becomes whether or not Katsura's result can be bolstered to product systems over semigroups other than Z+ and, if so, what applications do we obtain? An answer has been elusive, owing to the more pathological nature of product systems over general semigroups. However, recent strides by Dor-On and Kakariadis (2018) supply a more tractable subclass of product systems that still includes the important cases of C*-dynamics, row-finite higher-rank graphs, and regular product systems. 

In this talk we will build a parametrisation of the gauge-invariant ideals, starting from first principles and gradually increasing in complexity. We will pay particular attention to the higher-rank subtleties that are not witnessed in Katsura's theorem, and comment on the applications.
 

Thu, 18 Apr 2024

16:00 - 17:00
C2

Transportation Cost Spaces and their embeddings in L_1 spaces

Thomas Schulmprecht
(Texas A&M University)
Abstract

Transportation cost spaces are of high theoretical interest,  and they also are fundamental in applications in many areas of applied mathematics, engineering, physics, computer science, finance, and social sciences. 

Obtaining low distortion embeddings of transportation cost spaces into L_1 became important in the problem of finding nearest points, an important research subject in theoretical computer science. After introducing

these spaces we will present some results on upper  and lower estimates of the distortion of embeddings of Transportation Cost Spaces into L_1

Thu, 21 Mar 2024

16:00 - 17:00
C2

Biexact von Neumann algebras

Changying Ding
(UCLA)
Abstract

The notion of biexactness for groups was introduced by Ozawa in 2004 and has since become a major tool used for studying solidity of von Neumann algebras. We introduce the notion of biexactness for von Neumann algebras, which allows us to place many previous solidity results in a more systematic context, and naturally leads to extensions of these results. We will also discuss examples of solid factors that are not biexact. This is a joint work with Jesse Peterson.

Thu, 07 Mar 2024

15:00 - 16:00
L4

Tensorially absorbing inclusions

Pawel Sarkowicz
Abstract

We introduce the notion of a tensorially absorbing inclusion of C*-algebras, i.e., when a unital inclusion absorbs a strongly self-absorbing C*-algebra. This is a strong condition that ensures certain properties of both algebras (and their intermediate subalgebras) in a very strong sense. We discuss such inclusions, their non-triviality, and how often these inclusions appear.

Tue, 05 Mar 2024

16:00 - 17:00
C2

Connes's Bicentralizer Problem

Amine Marrakchi
(ENS Lyons)
Abstract

In the world of von Neumann algebras, the factors that do not have a trace, the so-called type III factors, are the most difficult to study. Some of their key structural properties are still not well-understood. In this talk, I will give a gentle introduction to Connes's Bicentralizer Problem, which is the most important open problem in the theory of type III factors. I will then present some recent progress on this problem and its applications.

Tue, 27 Feb 2024

16:00 - 17:00
C2

Simplicity of crossed products by FC-hypercentral groups

Shirly Geffen
(Munster, DE)
Abstract

Results from a few years ago of Kennedy and Schafhauser attempt to characterize the simplicity of reduced crossed products, under an assumption which they call vanishing obstruction. 

However, this is a strong condition that often fails, even in cases of finite groups acting on finite dimensional C*-algebras. In this work, we give complete C*-dynamical characterization, of when the crossed product is simple, in the setting of FC-hypercentral groups. 

This is a large class of amenable groups that, in the finitely-generated setting, is known to coincide with the set of groups with polynomial growth.

Tue, 20 Feb 2024

16:00 - 17:00
C2

Quantized differential calculus on quantum tori

Quanhua Xu
(Université de Franche-Comté)
Abstract

We discuss Connes’ quantized calculus on quantum tori and Euclidean spaces, as applications of the recent development of noncommutative analysis.
This talk is based on a joint work in progress with Xiao Xiong and Kai Zeng.
 

Thu, 15 Feb 2024

16:00 - 17:00
C3

Permutation matrices, graph independence over the diagonal, and consequences

Ian Charlesworth
(University of Cardiff)
Abstract

Often, one tries to understand the behaviour of non-commutative random variables or of von Neumann algebras through matricial approximations. In some cases, such as when appealing to the determinant conjecture or investigating the soficity of a group, it is important to find approximations by matrices with good algebraic conditions on their entries (e.g., being integers). On the other hand, the most common tool for generating asymptotic independence -- conjugating with random unitaries -- often destroys such delicate structure.

 I will speak on recent joint work with de Santiago, Hayes, Jekel, Kunnawalkam Elayavalli, and Nelson, where we investigate graph products (an interpolation between free and tensor products) and conjugation of matrix models by large structured random permutations. We show that with careful control of how the permutation matrices are chosen, we can achieve asymptotic graph independence with amalgamation over the diagonal matrices. We are able to use this fine structure to prove that strong $1$-boundedness for a large class of graph product von Neumann algebras follows from the vanishing of the corresponding first $L^2$-Betti number. The main idea here is to show that a version of the determinant conjecture holds as long as the individual algebras have generators with approximations by matrices with entries in the ring of integers of some finite extension of Q satisfying some conditions strongly reminiscent of soficity for groups.

 

Tue, 06 Feb 2024

16:00 - 17:00
C2

Quasidiagonal group actions and C^*-lifting problems

Samantha Pilgrim
(University of Glasgow)
Abstract

I will give an introduction to quasidiagonality of group actions wherein an action on a C^*-algebra is approximated by actions on matrix algebras.  This has implications for crossed product C^*-algebras, especially as pertains to finite dimensional approximation.  I'll sketch the proof that all isometric actions are quasidiagonal, which we can view as a dynamical Petr-Weyl theorem.  Then I will discuss an interplay between quasidiagonal actions and semiprojectivity of C^*-algebras, a property that allows "almost representations" to be perturbed to honest ones.  

Thu, 01 Feb 2024

16:00 - 17:00
C2

Classifiability of crossed products

Eusebio Gardella
(Chalmers, Gothenberg)
Abstract

To every action of a discrete group on a compact Hausdorff space one can canonically associate a C*-algebra, called the crossed product. The crossed product construction is an extremely popular one, and there are numerous results in the literature that describe the structure of this C* algebra in terms of the dynamical system. In this talk, we will focus on one of the central notions in the realm of the classification of simple, nuclear C*-algebras, namely Jiang-Su stability. We will review the existing results and report on the most recent progress in this direction, going beyond the case of free actions both for amenable and nonamenable groups. 

Parts of this talk are joint works with Geffen, Kranz, and Naryshkin, and with Geffen, Gesing, Kopsacheilis, and Naryshkin. 

Tue, 30 Jan 2024

16:00 - 17:00
C2

The infinite Hilbert matrix on spaces of analytic functions

Santeri Miihkinen
(Reading University)
Abstract

The (finite) Hilbert matrix is arguably one of the single most well-known matrices in mathematics. The infinite Hilbert matrix H was introduced by David Hilbert around 120 years ago in connection with his double series theorem. It can be interpreted as a linear operator on spaces of analytic functions by its action on their Taylor coefficients. The boundedness of H on the Hardy spaces Hp for 1 < p < ∞ and Bergman spaces Ap for 2 < p < ∞ was established by Diamantopoulos and Siskakis. The exact value of the operator norm of H acting on the Bergman spaces Ap for 4 ≤ p < ∞ was shown to be π /sin(2π/p) by Dostanic, Jevtic and Vukotic in 2008. The case 2 < p < 4 was an open problem until in 2018 it was shown by Bozin and Karapetrovic that the norm has the same value also on the scale2 < p < 4. In this talk, we introduce some background, review some of the old results, and consider the still partly open problem regarding the value of the norm on weighted Bergman spaces. We also consider a generalised Hilbert matrix operator and its (essential) norm. The talk is partly based on a joint work with Mikael Lindström, David Norrbo, and Niklas Wikman (Åbo Akademi University).
 

Tue, 23 Jan 2024

16:00 - 17:00
C2

Asymptotic freeness in tracial ultraproducts

Cyril Houdayer
(ENS Paris)
Abstract

I will present novel freeness results in ultraproducts of tracial von Neumann algebras. As a particular case, I will show that if a and b are the generators of the free group F_2, then the relative commutants of a and b in the ultraproduct of the free group factor are free with respect to the ultraproduct trace. The proof is based on a surprising application of Lp-boundedness results of Fourier multipliers in free group factors for p > 2. I will describe applications of these results to absorption and model theory of II_1 factors. This is joint work with Adrian Ioana.

Thu, 18 Jan 2024

16:00 - 17:00
C2

Morita equivalence for operator systems

Evgenios Kakariadis
(Newcastle University)
Abstract

In ring theory, Morita equivalence is an invariant for many properties, generalising the isomorphism of commutative rings. A strong Morita equivalence for selfadjoint operator algebras was introduced by Rieffel in the 60s, and works as a correspondence between their representations. In the past 30 years, there has been an interest to develop a similar theory for nonselfadjoint operator algebras and operator spaces with much success. Taking motivation from recent work of Connes and van Suijlekom, we will present a Morita theory for operator systems. We will give equivalent characterizations of Morita equivalence via Morita contexts, bihomomoprhisms and stable isomorphisms, while we will highlight properties that are preserved in this context. Time permitted we will provide applications to rigid systems, function systems and non-commutative graphs. This is joint work with George Eleftherakis and Ivan Todorov.

Thu, 11 Jan 2024
11:00
C2

L-open and l-closed C*-algebras

Aaron Tikuisis
(University of Ottawa)
Abstract

This talk concerns some ideas around the question of when a *-homomorphism into a quotient C*-algebra lifts. Lifting of *-homomorphisms arises prominently in the notions of projectivity and semiprojectivity, which in turn are closely related to stability of relations. Blackadar recently defined the notions of l-open and l-closed C*-algebras, making use of the topological space of *-homomorphisms from a C*-algebra A to another C*-algebra B, with the point-norm topology. I will discuss these properties and present new characterizations of them, which lead to solutions of some problems posed by Blackadar. This is joint work with Dolapo Oyetunbi.

Thu, 30 Nov 2023

16:00 - 17:00
C2

Noncommutative geometry meets harmonic analysis on reductive symmetric spaces

Shintaro Nishikawa
(University of Southampton)
Abstract

A homogeneous space G/H is called a reductive symmetric space if G is a (real) reductive Lie group, and H is a symmetric subgroup of G, meaning that H is the subgroup fixed by some involution on G. The representation theory on reductive symmetric spaces was studied in depth in the 1990s by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, among many others. In particular, they obtained the Plancherel formula for the L^2 space of G/H. An important aspect is that this generalizes the group case, obtained by Harish-Chandra, which corresponds to the case when G = G' x G' and H is the diagonal subgroup.

In our collaborative efforts with A. Afgoustidis, N. Higson, P. Hochs, Y. Song, we are studying this subject from the perspective of noncommutative geometry. I will describe this exciting new development, with a particular emphasis on describing what is new and how this is different from the traditional group case, i.e. the reduced group C*-algebra of G.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 14 Nov 2023

16:00 - 17:00
C2

Admissible KMS bundles on classifiable C$^*$-algebras

Robert Neagu
Abstract

Named after mathematical physicists Kubo, Martin, and Schwinger, KMS states are a special class of states on any C$^*$-algebra admitting a continuous action of the real numbers. Unlike in the case of von Neumann algebras, where each modular flow has a unique KMS state, the collection of KMS states for a given flow on a C$^*$-algebra can be quite intricate. In this talk, I will explain what abstract properties these simplices have and show how one can realise such a simplex on various classes of simple C$^*$-algebras.

Tue, 31 Oct 2023

16:00 - 17:00
C2

Local topological order and boundary algebras

Pieter Naaijkens
(University of Cardiff)
Abstract

The study of topologically ordered quantum phases has led to interesting connections with, for example, the study of subfactors. In this talk, I will introduce a new axiomatisation of such quantum models defined on d-dimensional square lattices in terms of nets of projections. These local topological order axioms are satisfied by known 2D models such as the toric code and Levin-Wen models built on a unitary fusion category. We show that these axioms lead to a definition of boundary algebras naturally living on a hyperplane. This boundary algebra encodes information about the excitations in the bulk theory, leading to a bulk-boundary correspondence. I will outline the main points, with an emphasis on interesting connections to operator algebras and fusion categories. Based on joint work with C. Jones, Penneys, and Wallick (arXiv:2307.12552).

Thu, 26 Oct 2023

16:00 - 17:00
C1

Cartan subalgebras of classifiable C*-algebras

Wilhelm Winter
Abstract

I will survey Cartan respectively diagonal subalgebras of nuclear C*-algebras. This setup corresponds to a presentation of the ambient C*-algebra as an amenable groupoid C*-algebra, which in turn means that there is an underlying structure akin to an amenable topological dynamical system.

The existence of such subalgebras is tightly connected to the UCT problem; the classification of Cartan pairs is largely uncharted territory. I will present new constructions of diagonals of the Jiang-Su algebra Z and of the Cuntz algebra O_2, and will then focus on distinguishing Cantor Cartan subalgebras of O_2.

Tue, 17 Oct 2023

16:00 - 17:00
C3

Compactness and related properties for weighted composition operators on BMOA

David Norrbo
(Åbo Akademi University)
Abstract

A previously known function-theoretic characterisation of compactness for a weighted composition operator on BMOA is improved. Moreover, the same function-theoretic condition also characterises weak compactness and complete continuity. In order to close the circle of implications, the operator-theoretic property of fixing a copy of c0 comes in useful. 

Tue, 10 Oct 2023

16:00 - 17:00
C2

Non-commutative graphs

Matthew Daws
(University of Lancaster)
Abstract

I will discuss various definitions of quantum or noncommutative graphs that have appeared in the literature, along with motivating examples.  One definition is due to Weaver, where examples arise from quantum channels and the study of quantum zero-error communication.  This definition works for any von Neumann algebra, and is "spatial": an operator system satisfying a certain operator bimodule condition.  Another definition, first due to Musto, Reutter, and Verdon, involves a generalisation of the concept of an adjacency matrix, coming from the study of (simple, undirected) graphs.  Here we study finite-dimensional C*-algebras with a given faithful state; examples are perhaps less obvious.  I will discuss generalisations of the latter framework when the state is not tracial, and discuss various notions of a "morphism" of the resulting objects