Forthcoming events in this series


Tue, 04 Mar 2025
16:00
C3

Connes' rigidity conjecture for groups with infinite center

Adriana Fernández I Quero
(University of Iowa)
Abstract

We propose a natural version of Connes' Rigidity Conjecture (1982) that involves property (T) groups with infinite centre. Using methods at the rich intersection between von Neumann algebras and geometric group theory, we identify several instances where this conjecture holds. This is joint work with Ionut Chifan, Denis Osin, and Hui Tan.

Tue, 25 Feb 2025
16:00
C3

Equivariant higher Dixmier-Douady theory for UHF-algebras

Valerio Bianchi
(Cardiff University)
Abstract

A classical result of Dixmier and Douady enables us to classify locally trivial bundles of C*-algebras with compact operators as fibres via methods in homotopy theory. Dadarlat and Pennig have shown that this generalises to the much larger family of bundles of stabilised strongly self-absorbing C*-algebras, which are classified by the first group of the cohomology theory associated to the units of complex topological K-theory. Building on work of Evans and Pennig I consider Z/pZ-equivariant C*-algebra bundles over Z/pZ-spaces. The fibres of these bundles are infinite tensor products of the endomorphism algebra of a Z/pZ-representation. In joint work with Pennig, we show that the theory refines completely to this equivariant setting. In particular, we prove a full classification of the C*-algebra bundles via equivariant stable homotopy theory.

Tue, 18 Feb 2025
16:00
C3

W*-superrigidity for group von Neumann algebras

Stefaan Vaes
(KU Leuven)
Abstract

A countable group G is said to be W*-superrigid if G can be entirely recovered from its ambient group von Neumann algebra L(G). I will present a series of joint works with Milan Donvil in which we establish new degrees of W*-superrigidity: isomorphisms may be replaced by virtual isomorphisms expressed by finite index bimodules, the group von Neumann algebra may be twisted by a 2-cocycle, the group G might have infinite center, or we may enlarge the category of discrete groups to the broader class of discrete quantum groups.

Tue, 11 Feb 2025
16:00
C3

Homology and K-theory for self-similar group actions

Alistair Miller
(University of Southern Denmark)
Abstract

Self-similar groups are groups of automorphisms of infinite rooted trees obeying a simple but powerful rule. Under this rule, groups with exotic properties can be generated from very basic starting data, most famously the Grigorchuk group which was the first example of a group with intermediate growth.

Nekrashevych introduced a groupoid and a C*-algebra for a self-similar group action on a tree as models for some underlying noncommutative space for the system. Our goal is to compute the K-theory of the C*-algebra and the homology of the groupoid. Our main theorem provides long exact sequences which reduce the problems to group theory. I will demonstrate how to apply this theorem to fully compute homology and K-theory through the example of the Grigorchuk group.

This is joint work with Benjamin Steinberg.

Tue, 04 Feb 2025
16:00
C3

Equivariant correspondences

Kenny de Commer
(VUB)
Abstract

Given two von Neumann algebras A,B with an action by a locally compact (quantum) group G, one can consider its associated equivariant correspondences, which are usual A-B-correspondences (in the sense of Connes) with a compatible unitary G-representation. We show how the category of such equivariant A-B-correspondences carries an analogue of the Fell topology, which is preserved under natural operations (such as crossed products or equivariant Morita equivalence). If time permits, we will discuss one particular interesting example of such a category of equivariant correspondences, which quantizes the representation category of SL(2,R). This is based on joint works with Joeri De Ro and Joel Dzokou Talla. 

Mon, 03 Feb 2025
16:00
C3

The uniqueness theorem for Kasparov theory

Gabor Szabo
(KU Leuven)
Abstract

Kasparov's bivariant K-theory (or KK-theory) is an extremely powerful invariant for both C*-algebras and C*-dynamical systems, which was originally motivated for a tool to solve classical problems coming from topology and geometry. Its paramount importance for classification theory was discovered soon after, impressively demonstrated within the Kirchberg-Phillips theorem to classify simple nuclear and purely infinite C*-algebras. Since then, it can be said that every methodological novelty about extracting information from KK-theory brought along some new breakthrough in classification theory. Perhaps the most important example of this is the Lin-Dadarlat-Eilers stable uniqueness theorem, which forms the technical basis behind many of the most important articles written over the past decade. In the recent landmark paper of Carrion et al, it was demonstrated how the stable uniqueness theorem can be upgraded to a uniqueness theorem of sorts under extra assumptions. It was then posed as an open problem whether the statement of a desired "KK-uniqueness theorem" always holds.

In this talk I want to present the affirmative answer to this question: If A and B are separable C*-algebras and (f,g) is a Cuntz pair of absorbing representations whose induced class in KK(A,B) vanishes, then f and g are strongly asymptotically unitarily equivalent. The talk shall focus on the main conceptual ideas towards this theorem, and I plan to discuss variants of the theorem if time permits. It turns out that the analogous KK-uniqueness theorem is true in a much more general context, which covers equivariant and/or ideal-related and/or nuclear KK-theory.

Tue, 28 Jan 2025
16:00
C3

Bicommutant Categories from Conformal Nets

Nivedita Nivedita
((University of Oxford))
Abstract

Two-dimensional chiral conformal field theories (CFTs) admit three distinct mathematical formulations: vertex operator algebras (VOAs), conformal nets, and Segal (functorial) chiral CFTs. With the broader aim to build fully extended Segal chiral CFTs, we start with the input of a conformal net. 

In this talk, we focus on presenting three equivalent constructions of the category of solitons, i.e. the category of solitonic representations of the net, which we propose is what theory (chiral CFT) assigns to a point. Solitonic representations of the net are one of the primary class of examples of bicommutant categories (a categorified analogue of a von Neumann algebras). The Drinfel’d centre of solitonic representations is the representation category of the conformal net which has been studied before, particularly in the context of rational CFTs (finite-index nets). If time permits, we will briefly outline ongoing work on bicommutant category modules (which are the structures assigned by the Segal Chiral CFT at the level of 1-manifolds), hinting towards a categorified analogue of Connes fusion of von Neumann algebra modules.

(Bicommutant categories act on W*-categories analogous to von Neumann algebras acting on Hilbert spaces)

Tue, 21 Jan 2025
16:00
C3

Quantum symmetries on Kirchberg algebras

Kan Kitamura
(Riken iThems)
Abstract

In subfactor theory, it has been observed that operator algebras often admit symmetries beyond mere groups, sometimes called quantum symmetries. Besides recent substantial progress on the classification programs of simple amenable C*-algebras and group actions on them, there has been increasing interest in their quantum symmetries. This talk is devoted to an attempt to ensure the existence of various quantum symmetries on simple amenable C*-algebras, at least in the purely infinite case, by providing a systematic way to produce them. As a technical ingredient, a simplicity criterion for certain Pimsner algebras is given.

Thu, 05 Dec 2024
16:00
C3

C*-diagonals in the C*-algebras of non-principal twisted groupoids

Anna Duwenig
(KU Leuven)
Abstract

The reduced twisted C*-algebra A of an étale groupoid G has a canonical abelian subalgebra D: functions on G's unit space. When G has no non-trivial abelian subgroupoids (i.e., G is principal), then D is in fact maximal abelian. Remarkable work by Kumjian shows that the tuple (A,D) allows us to reconstruct the underlying groupoid G and its twist uniquely; this uses that D is not only masa but even what is called a C*-diagonal. In this talk, I show that twisted C*-algebras of non-principal groupoids can also have such C*-diagonal subalgebras, arising from non-trivial abelian subgroupoids, and I will discuss the reconstructed principal twisted groupoid of Kumjian for such pairs of algebras.

Tue, 03 Dec 2024
16:00
C3

The space of traces of certain discrete groups

Raz Slutsky
(University of Oxford)
Abstract

A trace on a group is a positive-definite conjugation-invariant function on it. These traces correspond to tracial states on the group's maximal  C*-algebra. In the past couple of decades, the study of traces has led to exciting connections to the rigidity, stability, and dynamics of groups. In this talk, I will explain these connections and focus on the topological structure of the space of traces of some groups. We will see the different behaviours of these spaces for free groups vs. higher-rank lattices, and how our strategy for the free group can be used to answer a question of Musat and Rørdam regarding free products of matrix algebras. This is based on joint works with Arie Levit, Joav Orovitz, and Itamar Vigdorovich.

Thu, 28 Nov 2024
16:00
C3

On the (Local) Lifting Property

Tatiana Shulman
(University of Gothenburg)
Abstract

The (Local) Lifting Property ((L)LP) is introduced by Kirchberg and deals with lifting completely positive maps. We will discuss various examples, characterizations, and closure properties of the (L)LP and, if time permits, connections with some other lifting properties of C*-algebras.  Joint work with Dominic Enders.

Tue, 26 Nov 2024
16:00
C3

Quantum expanders from quantum groups.

Mike Brannan
(University of Waterloo)
Abstract

I will give a light introduction to the concept of a quantum expander, which is an analogue of an expander graph that arises in quantum information theory.  Most examples of quantum expanders that appear in the quantum information literature are obtained by random matrix techniques.  I will explain another, more algebraic approach to constructing quantum expanders, which is based on using actions and representations of discrete quantum groups with Kazhdan's property (T).  This is joint work with Eric Culf (U Waterloo) and Matthijs Vernooij (TU Delft).   

Thu, 21 Nov 2024
16:00
C3

C*-algebras coming from buildings and their K-theory.

Alina Vdovina
(CUNY)
Abstract
We consider cross-product algebras of continuous functions on the boundary of buildings with cocompact actions. The main tool is to view buildings as universal covers of certain CW-complexes. We will find the generators and relations of the cross-product algebras and compute their K-theory. We will show how our algebras could be considered as natural generalizations of Vaughan Jones' Pythagorean algebras.


 

Tue, 19 Nov 2024
16:00
C3

Residually finite dimensional C*-algebras arising in dynamical contexts

Adam Skalski
(University of Warsaw)
Abstract

A C*-algebra is said to be residually finite-dimensional (RFD) when it has `sufficiently many' finite-dimensional representations. The RFD property is an important, and still somewhat mysterious notion, with subtle connections to residual finiteness properties of groups. In this talk I will present certain characterisations of the RFD property for C*-algebras of amenable étale groupoids and for C*-algebraic crossed products by amenable actions of discrete groups, extending (and inspired by) earlier results of Bekka, Exel, and Loring. I will also explain the role of the amenability assumption and describe several consequences of our main theorems. Finally, I will discuss some examples, notably these related to semidirect products of groups.

Thu, 14 Nov 2024
16:00
C5

Quantum Non-local Games

Priyanga Ganesan
(UCSD)
Abstract

A non-local game involves two non-communicating players who cooperatively play to give winning pairs of answers to questions posed by an external referee. Non-local games provide a convenient framework for exhibiting quantum supremacy in accomplishing certain tasks and have become increasingly useful in quantum information theory, mathematics, computer science, and physics in recent years. Within mathematics, non-local games have deep connections with the field of operator algebras, group theory, graph theory, and combinatorics. In this talk, I will provide an introduction to the theory of non-local games and quantum correlation classes and show their connections to different branches of mathematics. We will discuss how entanglement-assisted strategies for non-local games may be interpreted and studied using tools from operator algebras, group theory, and combinatorics. I will then present a general framework of non-local games involving quantum questions and answers.

Tue, 12 Nov 2024
16:00
C3

Spectral gap in the operator on traces induced from a C*-correspondence

Jeremy Hume
(University of Glasgow)
Abstract

A C*-correspondence between two C*-algebras is a generalization of a *-homomorphism. Laca and Neshveyev showed that, like a *-homomorphism, there is an induced map between traces of the algebras. Given sufficient regularity conditions, the map defines a bounded operator between the spaces of (bounded) tracial linear functionals. 

This operator can be of independent interest - a special case of correspondence gives Ruelle's operator associated to a non-invertible discrete-time dynamical system, and the study of Ruelle's operator is the basis of his thermodynamic formalism. Moreover, by the work of Laca and Neshveyev, the operator's positive eigenvectors determine the KMS states of the gauge action on the Cuntz-Pimsner algebra of the correspondence.

Given a C*-correspondence from a C*-algebra to itself, we will present a sufficient condition on the C*-correspondence that implies the operator on traces has a unique positive eigenvector, and moreover a spectral gap. This result recovers the Perron-Frobenius theorem, aspects of Ruelle's thermodynamic formalism, and unique KMS state results for a variety of constructions of Cuntz-Pimsner algebras, including the C*-algebras associated to self-similar groupoids. The talk is based on work in progress.

Tue, 05 Nov 2024
16:00
C3

A stable uniqueness theorem for tensor category equivariant KK-theory

Sergio Giron Pacheco
(KU Leuven)
Abstract

The stable uniqueness theorem for KK-theory asserts that a Cuntz-pair of *-homomorphisms between separable C*-algebras gives the zero element in KK if and only if the *-homomorphisms are stably homotopic through a unitary path, in a specific sense. This result, along with its group equivariant analogue, has been crucial in the classification theory of C*-algebras and C*-dynamics. In this talk, I will present a unitary tensor category analogue of the stable uniqueness theorem and explore its application to a duality in tensor category equivariant KK-theory. To make the talk approachable even for those unfamiliar with actions of unitary tensor categories or KK-theory, I will introduce the relevant definitions and concepts, drawing comparisons with the case of group actions. This is joint work with Kan Kitamura and Robert Neagu.

Tue, 29 Oct 2024
16:00
C3

Semi-uniform stability of semigroups and their cogenerators

Andrew Pritchard
(University of Newcastle)
Abstract

The notion of semi-uniform stability of a strongly continuous semi-group refers to the stability of classical solutions of a linear evolution equation, and this has analogues with the classical Katznelson-Tzafriri theorem. The co-generator of a strongly continuous semigroup is a bounded linear operator that comes from a particular discrete approximation to the semigroup. After reviewing some background on (quantified) stability theory for semigroups and the Katznelson-Tzafriri theorem, I will present some results relating the stability of a strongly continuous semigroup with that of its cogenerator. This talk is based on joint work with David Seifert.

Thu, 24 Oct 2024
16:00
C3

Roe type algebras and their isomorphisms

Alessandro Vignati
(Université de Paris Cité)
Abstract

Roe type algebras are operator algebras designed to catch the large-scale behaviour of metric spaces. This talk focuses on the following question: if two Roe type algebras associated to spaces (X,d_X) and (Y,d_Y) are isomorphic, how similar are X and Y? We provide positive results proved in the last 5 years, and, if time allows it, we show that sometimes answers to this question are subject to set theoretic considerations

Tue, 22 Oct 2024
16:00
C3

A unified approach for classifying simple nuclear C*-algebras

Ben Bouwen
(University of Southern Denmark)
Abstract

The classification program of C*-algebras aims to classify simple, separable, nuclear C*-algebras by their K-theory and traces, inspired by analogous results obtained for von Neumann algebras. A landmark result in this project was obtained in 2015, building upon the work of numerous researchers over the past 20 years. More recently, Carrión, Gabe, Schafhauser, Tikuisis, and White developed a new, more abstract approach to classification, which connects more explicitly to the von Neumann algebraic classification results. In their paper, they carry out this approach in the stably finite setting, while for the purely infinite case, they refer to the original result obtained by Kirchberg and Phillips. In this talk, I provide an overview of how the new approach can be adapted to classify purely infinite C*-algebras, recovering the Kirchberg-Phillips classification by K-theory and obtaining Kirchberg's absorption theorems as corollaries of classification rather than (pivotal) ingredients. This is joint work with Jamie Gabe.

Tue, 15 Oct 2024
16:00
C3

Continuous selection in II1 factors

Andrea Vaccaro
(University of Münster)
Abstract

In this talk, based on a joint work with Ilijas Farah, I will present an application of an old continuous selection theorem due to Michael to the study of II1 factors. More precisely, I'll show that if two strongly continuous paths (or loops) of projections (p_t), (q_t), for t in [0,1], in a II1 factor are such that every p_t is subequivalent to q_t, then the subequivalence can be realized by a strongly continuous path (or loop) of partial isometries. I will then use an extension of this result to solve affirmatively the so-called trace problem for factorial W*-bundles whose base space is 1-dimensional.

Tue, 13 Aug 2024
14:00
C4

When is an operator system a C*-algebra?

Kristen Courtney
(University of Southern Denmark)
Abstract

In the category of operator systems, identification comes via complete order isomorphisms, and so an operator system can be identified with a C*-algebra without itself being an algebra. So, when is an operator system a C*-algebra? This question has floated around the community for some time. From Choi and Effros, we know that injectivity is sufficient, but certainly not necessary outside of the finite-dimensional setting. In this talk, I will give a characterization in the separable nuclear setting coming from C*-encoding systems. This comes from joint work with Galke, van Lujik, and Stottmeister.

Mon, 12 Aug 2024
16:00
C4

A topology on E-theory

Jose Carrion
(Texas Christian University)
Abstract
For separable C*-algebras A and B, we define a topology on the set [[A,B]] consisting of homotopy classes of asymptotic morphisms from A to B. This gives an enrichment of the Connes–Higson asymptotic category over topological spaces. We show that the Hausdorffization of this category is equivalent to the shape category of Dadarlat. As an application, we obtain a topology on the E-theory group E(A,B) with properties analogous to those of the topology on KK(A,B). The Hausdorffized E-theory group EL(A,B)  is also introduced and studied. We obtain a continuity result for the functor EL(- , B) which implies a new continuity result for the functor KL(-, B).
 
This is joint work with Christopher Schafhauser.
 
Tue, 16 Jul 2024

16:00 - 17:00
C4

Homotopy in Cuntz classes of Z-stable C*-algebras

Andrew Toms
(Purdue University)
Abstract

The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra.  It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra.  Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra.  This generalizes a known result from the setting of real rank zero C*-algebras.