Industrial and Applied Mathematics Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
2 May 2019
16:00
to
17:30
Dr. Robert Style
Abstract

Cracks in many soft solids behave very differently to the classical picture of fracture, where cracks are long and thin, with damage localised to a crack tip. In particular, small cracks in soft solids become highly rounded — almost circular — before they start to extend. However, despite being commonplace, this is still not well understood. We use a phase-separation technique in soft, stretched solids to controllably nucleate and grow small, nascent cracks. These give insight into the soft failure process. In particular, our results suggest fracture occurs in two regimes. When a crack is large, it obeys classical linear-elastic fracture mechanics, but when it is small it grows in a new, scale-free way at a constant driving stress.

  • Industrial and Applied Mathematics Seminar
9 May 2019
16:00
to
17:30
Professor Xanthippi Markenscoff

Further Information: 

Department of Mechanical and Aerospace Engineering University of California, San Diego La Jolla, CA 92093-0411 

xmarkens@ucsd.edu 

Abstract

PDF icon Prof Markenscoff Paper.pdf

Abstract

The dynamical fields that emanate from self-similarly expanding ellipsoidal regions undergoing phase change (change in density, i.e., volume collapse, and change in moduli) under pre-stress, constitute the dynamic generalization of the seminal Eshelby inhomogeneity problem (as an equivalent inclusion problem), and they consist of pressure, shear, and M waves emitted by the surface of the expanding ellipsoid and yielding Rayleigh waves in the crack limit. They may constitute the model of Deep Focus Earthquakes (DFEs) occurring under very high pressures and due to phase change. Two fundamental theorems of physics govern the phenomenon, the Cauchy-Kowalewskaya theorem, which based on dimensional analysis and analytic properties alone, dictates that there is zero particle velocity in the interior, and Noether’s theorem that extremizes (minimizes for stability) the energy spent to move the boundary so that it does not become a sink (or source) of energy, and determines the self-similar shape (axes expansion speeds). The expression from Noether’s theorem indicates that the expanding region can be planar, thus breaking the symmetry of the input and the phenomenon manifests itself as a newly discovered one of a “dynamic collapse/ cavitation instability”, where very large strain energy condensed in the very thin region can escape out. In the presence of shear, the flattened very thin ellipsoid (or band) will be oriented in space so that the energy due to phase change under pre-stress is able to escape out at minimum loss condensed in the core of dislocations gliding out on the planes where the maximum configurational force (Peach-Koehler) is applied on them. Phase change occurring planarly produces in a flattened expanding ellipdoid a new defect present in the DFEs. The radiation patterns are obtained in terms of the equivalent to the phase change six eigenstrain components, which also contain effects due to planarity through the Dynamic Eshelby Tensor for the flattened ellipsoid. Some models in the literature of DFEs are evaluated and excluded on the basis of not having the energy to move the boundary of phase discontinuity. Noether’s theorem is valid in anisotropy and nonlinear elasticity, and the phenomenon is independent of scales, valid from the nano to the very large ones, and applicable in general to other dynamic phenomena of stress induced martensitic transformations, shear banding, and amorphization.

 

  • Industrial and Applied Mathematics Seminar
23 May 2019
16:00
to
17:30
Dr. Murad Banaji
Abstract

Chemical reaction network (CRN) theory focusses on making claims about dynamical behaviours of reaction networks which are, as far as possible, dependent on the network structure but independent of model details such as functions chosen and parameter values. The claims are generally about the existence, nature and stability of limit sets, and the possibility of bifurcations, in models of CRNs with particular structural features. The methodologies developed can often be applied to large classes of models occurring in biology and engineering, including models whose origins are not chemical in nature. Many results have a natural algorithmic formulation. Apart from the potential for application, the results are often pleasing mathematically for their power and generality. 

This talk will concern some recent themes in CRN theory, particularly focussed on how the presence or absence of particular subnetworks ("motifs") influences allowed dynamical behaviours in ODE models of a CRN. A number of recent results take the form: "a CRN containing no subnetworks satisfying condition X cannot display behaviour of type Y"; but also, in the opposite direction, "if a CRN contains a subnetwork satisfying condition X, then some model of this CRN from class C admits behaviour of type Y". The proofs of such results draw on a variety of techniques from analysis, algebra, combinatorics, and convex geometry. I'll describe some of these results, outline their proofs, and sketch some current challenges in this area. 
 

  • Industrial and Applied Mathematics Seminar
6 June 2019
16:00
to
17:30
Dr. Lorna Ayton
Abstract

Aerodynamic noise is a fundamental concern facing the aviation industry,
whether it's the noise generated by a passenger aeroplane, or by a
delivery drone. The key feature linking all aerodynamic designs is
aerofoils/blades which generate both leading- and trailing-edge noise
through interaction with unsteady fluid flows. This talk will first
discuss the basics of noise generation by aerofoils in unsteady subsonic
flows, followed by discussing new adapted blade designs for
reducing leading-edge noise. In particular this talk will present
mathematical models that are capable of quickly predicting the generated
noise and can be used to aid in designing an acoustcally optimal aerofoil.

  • Industrial and Applied Mathematics Seminar
13 June 2019
16:00
to
17:30
Dr Tom Shearer
Abstract

Tendons are vital connective tissues that anchor muscle to bone to allow the transfer of forces to the skeleton. They exhibit highly non-linear viscoelastic mechanical behaviour that arises due to their complex, hierarchical microstructure, which consists of fibrous subunits made of the protein collagen. Collagen molecules aggregate to form fibrils with diameters of tens to hundreds of nanometres, which in turn assemble into larger fibres called fascicles with diameters of tens to hundreds of microns. In this talk, I will discuss the relationship between the three-dimensional organisation of the fibrils and fascicles and the macroscale mechanical behaviour of the tendon. In particular, I will show that very simple constitutive behaviour at the microscale can give rise to highly non-linear behaviour at the macroscale when combined with geometrical effects.

 

  • Industrial and Applied Mathematics Seminar
Add to My Calendar