16:00
The exceptional zero conjecture for GL(3)
Abstract
The BSD conjecture predicts that a rational elliptic curve $E$ has infinitely many points if and only if its $L$-function vanishes at $s=1$.
There are $p$-adic versions of similar phenomena. If $E$ is $p$-ordinary, there is, for example, a $p$-adic analytic analogue $L_p(E,s)$ of the $L$-function, and if $E$ has good reduction, then it has infinitely many rational points iff $L_p(E,1) = 0$. However if $E$ has split multiplicative reduction at $p$ - that is, if $E/\mathbf{Q}_p$ admits a Tate uniformisation $\mathbf{C}_p^{\times}/q^{\mathbf{Z}}$ - then $L_p(E,1) = 0$ for trivial reasons, regardless of $L(E,1)$; it has an 'exceptional zero'. Mazur--Tate--Teitelbaum's exceptional zero conjecture, proved by Greenberg--Stevens in '93, states that in this case the first derivative $L_p'(E,1)$ is much more interesting: it satisfies $L_p'(E,1) = \mathrm{log}(q)/\mathrm{ord}(q) \times L(E,1)/(\mathrm{period})$. In particular, it should vanish iff $L(E,1) = 0$ iff $E(\mathbf{Q})$ is infinite; and even better, it has a beautiful and surprising connection to the Tate period $q$, via the 'L-invariant' $\mathrm{log}(q)/\mathrm{ord}(q)$.
In this talk I will discuss exceptional zero phenomena and L-invariants, and a generalisation of the exceptional zero conjecture to automorphic representations of GL(3). This is joint work in progress with Daniel Barrera and Andrew Graham.