Forthcoming events in this series


Thu, 13 Mar 2025
16:00
Lecture Room 4

Fourier Asymptotics and Effective Equidistribution

Subhajit Jana
(Queen Mary University of London)
Abstract

We talk about effective equidistribution of the expanding horocycles on the unit cotangent bundle of the modular surface with respect to various classes of Borel probability measures on the reals, depending on their Fourier asymptotics.  This is a joint work with Shreyasi Datta.

Thu, 06 Mar 2025
16:00
Lecture Room 4, Mathematical Institute

Manin's conjecture for Châtelet surfaces

Katherine Woo
(Princeton)
Abstract

We resolve Manin's conjecture for all Châtelet surfaces over Q
(surfaces given by equations of the form x^2 + ay^2 = f(z)) -- in other
words, we establish asymptotics for the number of rational points of
increasing height. The key analytic ingredient is estimating sums of
Fourier coefficients of modular forms along polynomial values.

Thu, 27 Feb 2025

16:00 - 17:00
Lecture Room 4

The wild Brauer-Manin obstruction

Margherita Pagano
(Imperial College London)
Abstract

A way to study rational points on a variety is by looking at their image in the p-adic points. Some natural questions that arise are the following: is there any obstruction to weak approximation on the variety? Which primes might be involved in it? I will explain how primes of good reduction can play a role in the Brauer-Manin obstruction to weak approximation, with particular emphasis on the case of K3 surfaces.

Thu, 20 Feb 2025
16:00
Lecture Room 4

Close fields and the local Langlands correspondence

Daniel Li Huerta
(MPIM Bonn/MIT)
Abstract

There is an idea, going back to work of Krasner, that p-adic fields tend to function fields as absolute ramification tends to infinity. We will present a new way of rigorizing this idea, as well as give applications to the local Langlands correspondence of Fargues–Scholze.

Thu, 13 Feb 2025
16:00
Lecture Room 4

On the exceptional set in the abc conjecture

Joni Teräväinen
(University of Cambridge)
Abstract
The well known abc conjecture asserts that for any coprime triple of positive integers satisfying $a+b=c$, we have $c<K_{\varepsilon} \mathrm{rad}(abc)^{1+\varepsilon}$, where $\mathrm{rad}$ is the squarefree radical function. 
 
In this talk, I will discuss a proof giving the first power-saving improvement over the trivial bound for the number of exceptions to this conjecture. The proof is based on a combination of various methods for counting rational points on curves, and a combinatorial analysis to patch these cases together.
 
This is joint work with Tim Browning and Jared Lichtman.
Thu, 06 Feb 2025
16:00
L4

Unramified Langlands: geometric and function-theoretic

Dennis Gaitsgory
(MPIM, Bonn)
Abstract

I will explain the content of Geometric Langlands (which is a theorem over the ground fields of characteristic 0 but still a conjecture in positive characteristic) and show how it implies a description of the space of automorphic functions in terms of Galois data. The talk will mostly follow a joint paper with Arinkin, Kazhdan, Raskin, Rozenblyum and Varshavsky from 2022.

Thu, 30 Jan 2025
16:00
Lecture Room 4

3-descent on genus 2 Jacobians using visibility

Lazar Radicevic
(King's College London)
Abstract

We show how to explicitly compute equations for everywhere locally soluble 3-coverings of Jacobians of genus 2 curves with a rational Weierstrass point, using the notion of visibility introduced by Cremona and Mazur.  These 3-coverings are abelian surface torsors, embedded in the projective space $\mathbb{P}^8$ as degree 18 surfaces. They have points over every $p$-adic completion of $\mathbb{Q}$, but no rational points, and so are counterexamples to the Hasse principle and represent non-trivial elements of the Tate-Shafarevich group.  Joint work in progress with Tom Fisher.

Thu, 23 Jan 2025
16:00
Lecture Room 4

Continuity of heights and complete intersections in toric varieties

Michal Szachniewicz
((University of Oxford))
Abstract

I will describe the contents of a joint project with Pablo Destic and Nuno Hultberg. In the paper we confirm a conjecture of Roberto Gualdi regarding a formula for the average height of the intersection of twisted (by roots of unity) hyperplanes in a toric variety. I will introduce the 'GVF analytification' of a variety, which is defined similarly as the Berkovich analytification, but with norms replaced by heights. Moreover, I will discuss some motivations coming from (continuous) model theory and Arakelov geometry.

Thu, 19 Dec 2024
16:00
L5

Geodesic cycles and Eisenstein classes for SL(2,Z)

Hohto Bekki
(MPIM Bonn)
Abstract

The geodesic cycles (resp. Eisenstein classes) for SL(2,Z) are special classes in the homology (resp. cohomology) of modular curve (for SL(2,Z)) defined by the closed geodesics (resp. Eisenstein series). It is known that the pairing between these geodesic cycles and Eisenstein classes gives the special values of partial zeta functions of real quadratic fields, and this has many applications. In this talk, I would like to report on some recent observations on the size of the homology subgroup generated by geodesic cycles and their applications. This is a joint work with Ryotaro Sakamoto.

Thu, 05 Dec 2024
16:00
Lecture Room 3

Zeros of polynomials with restricted coefficients: a problem of Littlewood

Benjamin Bedert
(University of Oxford)
Abstract

The study of polynomials whose coefficients lie in a given set $S$ (the most notable examples being $S=\{0,1\}$ or $\{-1,1\}$) has a long history leading to many interesting results and open problems. We begin with a brief general overview of this topic and then focus on the following old problem of Littlewood. Let $A$ be a set of positive integers, let $f_A(x)=\sum_{n\in A}\cos(nx)$ and define $Z(f_A)$ to be the number of zeros of $f_A$ in $[0,2\pi]$. The problem is to estimate the quantity $Z(N)$ which is defined to be the minimum of $Z(f_A)$ over all sets $A$ of size $N$. We discuss recent progress showing that $Z(N)\geqslant (\log \log N)^{1-o(1)}$ which provides an exponential improvement over the previous lower bound. 

A closely related question due to Borwein, Erd\'elyi and Littmann asks about the minimum number of zeros of a cosine polynomial with $\pm 1$-coefficients. Until recently it was unknown whether this even tends to infinity with the degree $N$. We also discuss work confirming this conjecture.

 

Thu, 28 Nov 2024
16:00
Lecture Room 3

Large sieve inequalities for exceptional Maass forms and applications

Alexandru Pascadi
(University of Oxford)
Abstract

A number of results on classical problems in analytic number theory rely on bounds for multilinear forms of Kloosterman sums, which in turn use deep inputs from the spectral theory of automorphic forms. We’ll discuss our recent work available at arxiv.org/abs/2404.04239, which uses this interplay between counting problems, exponential sums, and automorphic forms to improve results on the greatest prime factor of $n^2+1$, and on the exponents of distribution of primes and smooth numbers in arithmetic progressions.
The key ingredient in this work are certain “large sieve inequalities” for exceptional Maass forms, which improve classical results of Deshouillers-Iwaniec in special settings. These act as on-average substitutes for Selberg’s eigenvalue conjecture, narrowing (and sometimes completely closing) the gap between previous conditional and unconditional results.

Thu, 14 Nov 2024
16:00
Lecture Room 3

An analytic formula for points on elliptic curves

Alan Lauder
(University of Oxford)
Abstract

Given an elliptic curve over the rationals, a natural problem is to find an explicit point of infinite order over a given number field when there is expected to be one. Geometric constructions are known in only two different settings. That of Heegner points, developed since the 1950s, which yields points over abelian extensions of imaginary quadratic fields. And that of Stark-Heegner points, from the late 1990s: here the points constructed are conjectured to be defined over abelian extensions of real quadratic fields. I will describe a new analytic formula which encompasses both of these, and conjecturally yields points in many other settings. This is joint work with Henri Darmon and Victor Rotger.

Thu, 07 Nov 2024
16:00
L3

E-functions and their roots

Peter Jossen
(King's College London)
Abstract
E-functions are a special class of entire function given by power series with algebraic coefficients, particular examples of which are the exponential function or Bessel functions. They were introduced by Siegel in the 1930's.
 
While special values of E-functions are relatively well understood, their roots remain mysterious in many ways. I will explain how roots of E-functions are distributed in the complex plane (essentially a Theorem of Pólya), and discuss a couple of related questions and conjectures. From the roots of an E-function one may also fabricate a "spectral" zeta function, which turns out to have some interesting properties.
Thu, 31 Oct 2024
16:00
L3

Cusp forms of level one and weight zero

George Boxer
(Imperial College London)
Abstract
A theme in number theory is the non-existence of objects which are "too unramified".  For instance, by Minkowski there are no everywhere unramified extensions of Q, and by Fontaine and Abrashkin there are no abelian varieties over Q with everywhere good reduction.  Such results may be viewed (possibly conditionally) through the lens of the Stark-Odlyzko positivity method in the theory of L-functions.
 
After reviewing these things, I will turn to the question of this talk: for n>1 do there exist cuspidal automorphic forms for GL_n which are everywhere unramified and have lowest regular weight (cohomological weight 0)?  For n=2 these are more familiarly holomorphic cuspforms of level 1 and weight 2.  This question may be rephrased in terms of the existence of cuspidal cohomology of GL_n(Z) or (at least conjecturally) in terms of the existence of certain motives or Galois representations.  In 1997, Stephen Miller used the positivity method to show that they do not exist for n<27.  In the other direction, in joint work with Frank Calegari and Toby Gee, we prove that they do exist for some n, including n=79,105, and 106.
Thu, 24 Oct 2024
16:00
Lecture Room 3

Non-generic components of the Emerton-Gee stack for $\mathrm{GL}_{2}$

Kalyani Kansal
(Imperial College London)
Abstract

Let $K$ be an unramified extension of $\mathbb{Q}_p$ for a prime $p > 3$. The reduced part of the Emerton-Gee stack for $\mathrm{GL}_{2}$ can be viewed as parameterizing two-dimensional mod $p$ Galois representations of the absolute Galois group of $K$. In this talk, we will consider the extremely non-generic irreducible components of this reduced part and see precisely which ones are smooth or normal, and which have Gorenstein normalizations. We will see that the normalizations of the irreducible components admit smooth-local covers by resolution-rational schemes. We will also determine the singular loci on the components, and use these results to update expectations about the conjectural categorical $p$-adic Langlands correspondence. This is based on recent joint work with Ben Savoie.

Thu, 17 Oct 2024
16:00
Lecture Room 3

Primes of the form $x^2 + ny^2$ with $x$ and $y$ prime

Ben Green
(University of Oxford)
Abstract

If $n$ is congruent to 0 or 4 modulo 6, there are infinitely many primes of the form $x^2 + ny^2$ with both $x$ and $y$ prime. (Joint work with Mehtaab Sawhney, Columbia)

Thu, 13 Jun 2024
16:00
L5

The Gross--Kohnen--Zagier theorem via $p$-adic uniformization

Martí Roset Julià
(McGill University)
Abstract

Let $S$ be a set of rational places of odd cardinality containing infinity and a rational prime $p$. We can associate to $S$ a Shimura curve $X$ defined over $\mathbb{Q}$. The Gross--Kohnen--Zagier theorem states that certain generating series of Heegner points of $X$ are modular forms of weight $3/2$ valued in the Jacobian of $X$. We will state this theorem and outline a new approach to proving it using the theory of $p$-adic uniformization and $p$-adic families of modular forms of half-integral weight. This is joint work with Lea Beneish, Henri Darmon, and Lennart Gehrmann.

Thu, 06 Jun 2024
16:00
L5

Intersections of geodesics on modular curves and Hilbert modular forms

Håvard Damm-Johnsen
( Oxford)
Abstract

The 12th of Hilbert's 23 problems posed in 1900 asks for an explicit description of abelian extensions of a given base field. Over the rationals, this is given by the exponential function, and over imaginary quadratic fields, by meromorphic functions on the complex upper half plane.  Darmon and Vonk's theory of rigid meromorphic cocycles, or "RM theory", includes conjectures giving a $p$-adic solution over real quadratic fields. These turn out to be closely linked to purely topological questions about intersections of geodesics in the upper half plane, and to $p$-adic deformations of Hilbert modular forms. I will explain an extension of results of Darmon, Pozzi and Vonk proving some of these conjectures, and some ongoing work concerning analogous results on Shimura curves.

Thu, 30 May 2024
16:00
Lecture Theatre 5, Mathematical Institute

Large values of Dirichlet polynomials, and primes in short intervals

James Maynard
(University of Oxford)
Abstract

One can get fairly good estimates for primes in short
intervals under the assumption of the Riemann Hypothesis. Weaker
estimates can be shown unconditionally by using a 'zero density
estimate' in place of the Riemann Hypothesis. These zero density
estimates are typically proven by bounding how often a Dirichlet
polynomial can take large values, but have been limited by our
understanding of the number of zeros with real part 3/4. We introduce a
new method to prove large value estimates for Dirichlet polynomials,
which improves on previous estimates near the 3/4 line.

This is joint work (still in progress) with Larry Guth.

Thu, 23 May 2024
16:00
L5

Square roots for symplectic L-functions and Reidemeister torsion

Amina Abdurrahman
(IHES)
Abstract

We give a purely topological formula for the square class of the central value of the L-function of a symplectic representation on a curve. We also formulate a topological analogue of the statement, in which the central value of the L-function is replaced by Reidemeister torsion of 3-manifolds. This is related to the theory of epsilon factors in number theory and Meyer’s signature formula in topology among other topics. We will present some of these ideas and sketch aspects of the proof. This is joint work with Akshay Venkatesh.

Thu, 16 May 2024
16:00
L5

Ergodic Approach to the Mixing Conjecture

George Robinson
( Oxford)
Abstract

The Mixing Conjecture of Michel-Venkatesh has now taken on additional arithmetic significance via Wiles' new approach to modularity. Inspired by this, we present the best currently available method, pioneered by Khayutin's proof for quaternion algebras over the rationals, which we have successfully applied to totally real fields. The talk will overview the method, which brings a suprising combination of ergodic theory, analysis and geometry to bear on this arithmetic problem.

Thu, 09 May 2024
16:00
L5

Random multiplicative functions and non-Gaussian central limit theorem

Mo Dick Wong
(University of Durham)
Abstract

There have been a lot of interests in understanding the behaviour of random multiplicative functions, which are probabilistic models for deterministic arithmetic functions such as the Möbius function and Dirichlet characters. Despite recent advances, the limiting distributions of partial sums of random multiplicative functions remain mysterious even at the conjectural level. In this talk, I shall discuss the so-called $L^2$ regime of twisted sums and provide a precise answer to the distributional problem. This is based on ongoing work with Ofir Gorodetsky.

Thu, 02 May 2024
16:00
Lecture Room 4, Mathematical Institute

Twisted correlations of the divisor function via discrete averages of $\operatorname{SL}_2(\mathbb{R})$ Poincaré series

Jori Merikoski
(University of Oxford)
Abstract

The talk is based on joint work with Lasse Grimmelt. We prove a theorem that allows one to count solutions to determinant equations twisted by a periodic weight with high uniformity in the modulus. It is obtained by using spectral methods of $\operatorname{SL}_2(\mathbb{R})$ automorphic forms to study Poincaré series over congruence subgroups while keeping track of interactions between multiple orbits. This approach offers increased flexibility over the widely used sums of Kloosterman sums techniques. We give applications to correlations of the divisor function twisted by periodic functions and the fourth moment of Dirichlet $L$-functions on the critical line.

Thu, 25 Apr 2024
16:00
Lecture Room 4, Mathematical Institute

The leading constant in Malle's conjecture

Dan Loughran
(University of Bath)
Abstract

A conjecture of Malle predicts an asymptotic formula for the number of number fields with given Galois group and bounded discriminant. Malle conjectured the shape of the formula but not the leading constant. We present a new conjecture on the leading constant motivated by a version for algebraic stacks of Peyre's constant from Manin's conjecture. This is joint work with Tim Santens.