Forthcoming events in this series
Monstrous moonshine and black holes
Abstract
\ \ In 1939 Rademacher derived a conditionally convergent series expression for the modular j-invariant, and used this expression---the first Rademacher sum---to verify its modular invariance. We may attach Rademacher sums to other discrete groups of isometries of the hyperbolic plane, and we may ask how the automorphy of the resulting functions reflects the geometry of the group in question.
\\
\ \ In the case of a group that defines a genus zero quotient of the hyperbolic plane the relationship is particularly striking. On the other hand, of the common features of the groups that arise in monstrous moonshine, the genus zero property is perhaps the most elusive. We will illustrate how Rademacher sums elucidate this phenomena by using them to formulate a characterization of the discrete groups of monstrous moonshine.
\\
\ \ A physical interpretation of the Rademacher sums comes into view when we consider black holes in the context of three dimensional quantum gravity. This observation, together with the application of Rademacher sums to moonshine, amounts to a new connection between moonshine, number theory and physics, and furnishes applications in all three fields.
Representation zeta functions of groups and a conjecture of Larsen-Lubotzky
00:00
Base sizes for algebraic groups
Abstract
Let G be a permutation group on a set S. A base for G is a subset B of S such that the pointwise stabilizer of B in G is trivial. We write b(G) for the minimal size of a base for G.
Bases for finite permutation groups have been studied since the early days of group theory in the nineteenth century. More recently, strong bounds on b(G) have been obtained in the case where G is a finite simple group, culminating in the recent proof, using probabilistic methods, of a conjecture of Cameron.
In this talk, I will report on some recent joint work with Bob Guralnick and Jan Saxl on base sizes for algebraic groups. Let G be a simple algebraic group over an algebraically closed field and let S = G/H be a transitive G-variety, where H is a maximal closed subgroup of G. Our goal is to determine b(G) exactly, and to obtain similar results for some additional base-related measures which arise naturally in the algebraic group context. I will explain the key ideas and present some of the results we have obtained thus far. I will also describe some connections with the corresponding finite groups of Lie type.
Finite generation of invariants over an arbitrary base
Abstract
A classic problem in invariant theory, often referred to as Hilbert's 14th problem, asks, when a group acts on a finitely generated commutative algebra by algebra automorphisms, whether the ring of invariants is still finitely generated. I shall present joint work with W. van der Kallen treating the problem for a Chevalley group over an arbitrary base. Progress on the corresponding problem of finite generation for rational cohomology will be discussed.
Birational Geometry via Auslander Algebras
Abstract
I'll explain how the `Auslander philosophy' from finite dimensional algebras gives new methods to tackle problems in higher-dimensional birational geometry. The geometry tells us what we want to be true in the algebra and conversely the algebra gives us methods of establishing derived equivalences (and other phenomenon) in geometry. Algebraically two of the main consequences are a version of AR duality that covers non-isolated singularities and also a theory of mutation which applies to quivers that have both loops and two-cycles.
Kazhdan quotients of Golod-Shafarevich groups
Abstract
Informally speaking, a finitely generated group G is said to be {\it Golod-Shafarevich} (with respect to a prime p) if it has a presentation with a ``small'' set of relators, where relators are counted with different weights depending on how deep they lie in the Zassenhaus p-filtration. Golod-Shafarevich groups are known to behave like (non-abelian) free groups in many ways: for instance, every Golod-Shafarevich group G has an infinite torsion quotient, and the pro-p completion of G contains a non-abelian free pro-p group. In this talk I will extend the list of known ``largeness'' properties of Golod-Shafarevich groups by showing that they always have an infinite quotient with Kazhdan's property (T). An important consequence of this result is a positive answer to a well-known question on non-amenability of Golod-Shafarevich groups.
Divisibility properties of character degrees and p-local structure of finite groups
Abstract
Many classical results and conjectures in representation theory of finite groups (such as
theorems of Thompson, Ito, Michler, the McKay conjecture, ...) address the influence of global properties of representations of a finite group G on its p-local structure. It turns out that several of them also admit real, resp. rational, versions, where one replaces the set of all complex representations of G by the much smaller subset of real, resp. rational, representations. In this talk we will discuss some of these results, recently obtained by the speaker and his collaborators. We will also discuss recent progress on the Brauer height zero conjecture for 2-blocks of maximal defect.
Localising subcategories of the stable module category for a finite group
Representation growth of finitely generated nilpotent groups
Abstract
The study of representation growth of infinite groups asks how the
numbers of (suitable equivalence classes of) irreducible n-dimensional
representations of a given group behave as n tends to infinity. Recent
works in this young subject area have exhibited interesting arithmetic
and analytical properties of these sequences, often in the context of
semi-simple arithmetic groups.
In my talk I will present results on the representation growth of some
classes of finitely generated nilpotent groups. They draw on methods
from the theory of zeta functions of groups, the (Kirillov-Howe)
coadjoint orbit formalism for nilpotent groups, and the combinatorics
of (finite) Coxeter groups.
On the number of conjugacy classes of a finite group
Abstract
We classify certain linear representations of finite groups with a large orbit. This is motivated by a question on the number of conjugacy classes of a finite group.
Hochschild and block cohomology varieties are isomorphic
Endomorphisms of tensor space and cellular algebras
Abstract
endomorphism algebras in question, both in the classical and quantum cases.