Forthcoming events in this series


Tue, 14 Jun 2016

15:45 - 16:45
L4

Symplectic homology for cobordisms

Alexandru Oancea
(Jussieu)
Abstract

I will present a definition of symplectic homology groups for pairs of Liouville cobordisms with fillings, and explain how these fit into a formalism of homology theory similar to that of Eilenberg and Steenrod. This construction allows to understand form a unified point of view many structural results involving Floer homology groups, and yields new applications. Joint work with Kai Cieliebak.

Tue, 07 Jun 2016

15:45 - 16:45
L4

Matrix factorisation of Morse-Bott functions

Constantin Teleman
(Oxford)
Abstract

For a holomorphic function (“superpotential”)  W: X —> C on a complex manifold X, one defines the (2-periodic) matrix factorisation category MF(X;W), which is supported on the critical locus Crit(W) of W. At a Morse singularity, MF(X;W) is equivalent to the category of modules over the Clifford algebra on the tangent space TX. It had been suggested by Kapustin and Rozansky that, for Morse-Bott W, MF(X;W) should be equivalent to the (2-periodicised) derived category of Crit(W), twisted by the Clifford algebra of the normal bundle. I will discuss why this holds when the first neighbourhood of Crit(W) splits, why it fails in general, and will explain the correct general statement.

Tue, 31 May 2016

15:45 - 16:45
L4

Non-reductive GIT for graded groups and curve counting

Greg Berczi
(Oxford)
Abstract
I will start with a short report on recent progress in constructing quotients by actions of non-reductive algebraic groups and extending Mumford's geometric invariant theory to a wide class of non-reductive linear algebraic groups which we call graded groups. I will then explain how certain components of the Hilbert scheme of points on smooth varieties can be described as non-reductive quotients and why this description is especially efficient to study the topology of Hilbert schemes. In particular I will explain how equivariant localisation can be used to develop iterated residue formulae for tautological integrals on geometric subsets of Hilbert schemes and I present new formulae counting curves on surfaces (and more generally hypersurfaces in smooth varieties) with given singularity classes. This talk is based on joint works with Frances Kirwan, Thomas Hawes, Brent Doran and Andras Szenes. 
Tue, 10 May 2016

15:30 - 17:00
L4

Cohomological DT theory beyond the integrality conjecture

Ben Davison
(EPFL)
Abstract
The integrality conjecture is one of the central conjectures of the DT theory of quivers with potential, which itself is a key tool in understanding the local calculation of DT invariants on moduli spaces of coherent sheaves, as well as having deep links to geometric representation theory, noncommutative geometry and algebraic combinatorics.  I will explain some of the ingredients of the proof of this conjecture by myself and Sven Meinhardt.  In fact the proof gives much more than the original conjecture, which ultimately concerns identities in a Grothendieck ring of mixed Hodge structures associated to moduli spaces of representations, and proves that these equalities categorify to isomorphisms in the category of mixed Hodge structures.  I'll explain what this all means, as well as giving some applications of the categorified version of the theory.
Tue, 19 Apr 2016

15:45 - 16:45
L3

Cutting and pasting in algebraic geometry

Ravi Vakil
(Stanford)
Abstract

Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X,  [X] = [U] + [X - U]. Multiplicative structure:  [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology.  I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural).  A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.

Tue, 08 Mar 2016

15:45 - 16:45
L4

The wall-crossing formula and spaces of quadratic differentials

Tom Bridgeland
(Sheffield)
Abstract

The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.

Tue, 01 Mar 2016

15:45 - 16:45
L4

Topological Fukaya category and homological mirror symmetry

Nicolo Sibilla
(UBC Vancouver)
Abstract

The topological Fukaya category is a combinatorial model of the Fukaya category of exact symplectic manifolds which was first proposed by Kontsevich. In this talk I will explain work in progress (joint with J. Pascaleff and S. Scherotzke) on gluing techniques for the topological Fukaya category that are closely related to Viterbo functoriality. I will emphasize applications to homological mirror symmetry for three-dimensional CY LG models, and to Bondal's and Fang-Liu-Treumann-Zaslow's coherent constructible correspondence for toric varieties.  

Tue, 23 Feb 2016

15:45 - 16:45
L4

Log stable maps and Morse theory of toric varieties

William (Danny) Gillam
(Bogazici University Turkey)
Abstract

We will discuss a result to the effect that the moduli space of log stable maps to a toric variety X is "the same" as the Morse-theoretic moduli space of broken gradient flow lines in the "differentiable realization" Y of the fan for X.  This is joint work with Sam Molcho.

Tue, 16 Feb 2016

15:45 - 16:45
L4

The K3 category of a cubic fourfold

Daniel Huybrechts
(Bonn)
Abstract

Smooth cubic fourfolds are linked to K3 surfaces via their Hodge structures, due to work of Hassett, and via Kuznetsov's K3 category A. The relation between these two viewpoints has recently been elucidated by Addington and Thomas. 
We study both of these aspects further and extend them to twisted K3 surfaces, which in particular allows us to determine the group of autoequivalences of A for the general cubic fourfold. Furthermore, we prove finiteness results for cubics with equivalent K3 categories and study periods of cubics in terms of generalized K3 surfaces.

Tue, 09 Feb 2016

15:45 - 16:45
L4

A new duality for categories of B-branes

Ed Segal
(Inperial College London)
Abstract

Given an Artin stack $X$, there is growing evidence that there should be an associated `category of B-branes', which is some subcategory of the derived category of coherent sheaves on $X$. The simplest case is when $X$ is just a vector space modulo a linear action of a reductive group, or `gauged linear sigma model' in physicists' terminology. In this case we know some examples of what the category B-branes should be. Hori has conjectured a physical duality between certain families of GLSMs, which would imply that their B-brane categories are equivalent. We prove this equivalence of categories. As an application, we construct Homological Projective Duality for (non-commutative resolutions of) Pfaffian varieties.

Tue, 09 Feb 2016

14:00 - 15:00
L4

Virtual signed Euler characteristics and the Vafa-Witten equations

Richard Thomas
(Imperial College London)
Abstract

I will describe 5 definitions of Euler characteristic for a space with perfect obstruction theory (i.e. a well-behaved moduli space), and their inter-relations. This is joint work with Yunfeng Jiang. Then I will describe work of Yuuji Tanaka on how to this can be used to give two possible definitions of Vafa-Witten invariants of projective surfaces in the stable=semistable case.

Tue, 19 Jan 2016

15:45 - 16:45
L4

Symplectic categories in Derived Geometry

Lino Amorim
(Oxford)
Abstract

I will describe a construction of the Weinstein symplectic category of Lagrangian correspondences in the context of shifted symplectic geometry. I will then explain how one can linearize this category starting from a "quantization" of  (-1)-shifted symplectic derived stacks: we assign a perverse sheaf to each (-1)-shifted symplectic derived stack (already done by Joyce and his collaborators) and a map of perverse sheaves to each (-1)-shifted Lagrangian correspondence (still conjectural).

Tue, 01 Dec 2015

15:45 - 16:45
L4

Applications of theta-stratifications

Daniel Halpern-Leistner
(Columbia)
Abstract

I will survey some applications of a special kind of stratification of an algebraic stack called a theta-stratification. The goal is to eventually be able to study semistability and wall-crossing 
in a large array of moduli problems beyond the well-known examples. The most general application is to studying the derived category of coherent sheaves on the stack, but one can use this to understand the topology (K-theory, Hodge-structures, etc.) of the semistable locus and how it changes as one varies the stability condition. I will also describe a ``virtual non-abelian localization theorem'' which computes the virtual index of certain classes in the K-theory of a stack with perfect obstruction theory. This generalizes the virtual localization theorem of Pandharipande-Graber and the K-theoretic localization formulas of Teleman and Woodward.

Thu, 26 Nov 2015

14:45 - 15:45
L4

The moduli stack of tropical curves (COW SEMINAR)

Martin Ulirsch
(University of Bonn)
Abstract

The moduli space of tropical curves (and its variants) is one of the most-studied objects in tropical geometry. So far this moduli space has only been considered as an essentially set-theoretic coarse moduli space (sometimes with additional structure). As a consequence of this restriction, the tropical forgetful map does not define a universal curve
(at least in the positive genus case). The classical work of Knudsen has resolved a similar issue for the algebraic moduli space of curves by considering the fine moduli stacks instead of the coarse moduli spaces. In this talk I am going to give an introduction to these fascinating tropical moduli spaces and report on ongoing work with R. Cavalieri, M. Chan, and J. Wise, where we propose the notion of a moduli stack of tropical curves as a geometric stack over the category of rational polyhedral cones. Using this framework one can give a natural interpretation of the forgetful morphism as a universal curve. The coarse moduli space arises as the set of $\mathbb{R}_{\geq 0}$-valued points of the moduli stack. Given time, I will also explain how the process of tropicalization for these moduli stacks can be phrased in a more fundamental way using the language of logarithmic algebraic stacks.
 

Thu, 26 Nov 2015

13:30 - 14:30
L4

Recent advances in symplectic duality (COW SEMINAR)

Alexander Braverman
(Brown University)
Abstract

It has been observed long time ago (by many people) that singular affine symplectic varieties come in pairs; that is often to an affine singular symplectic variety $X$ one can associate a dual variety $X^!$; the geometries of $X$ and $X^!$ (and their quantizations) are related in a non-trivial way. The purpose of the talk will be 3-fold:

1) Explain a set of conjectures of Braden, Licata, Proudfoot and Webster which provide an exact formulation of the relationship between $X$ and $X^!$

2) Present a list of examples of symplectically dual pairs (some of them are very recent); in particular, we shall explain how the symplectic duals to Nakajima quiver varieties look like.

3) Give a new approach to the construction of $X^!$ and a proof of the conjectures from part 1).

The talk is based on a work in progress with Finkelberg and Nakajima.

Tue, 24 Nov 2015

15:45 - 16:45
L4

The Tamagawa number formula for affine Kac-Moody groups

Alexander Braverman
(Brown University)
Abstract

Let F be a global field and let A denote its adele ring. The usual Tamagawa number formula computes the (suitably normalized) volume of the quotient G(A)/G(F) in terms of values of the zeta-function of F at the exponents of G; here G is simply connected semi-simple group. When F is functional field, this computation is closely related to the Atiyah-Bott computation of the cohomology of the moduli space of G-bundles on a smooth projective curve.

I am going to present a (somewhat indirect) generalization of the Tamagawa formula to the case when G is an affine Kac-Moody group and F is a functional fiend. Surprisingly, the proof heavily uses the so called Macdonald constant term identity. We are going to discuss possible (conjectural) geometric interpretations of this formula (related to moduli spaces of bundles on surfaces).

This is joint work with D.Kazhdan.

Tue, 17 Nov 2015

15:45 - 16:45
L4

The Grothendieck-Riemann-Roch theorem and the Frobenius morphism

Damian Rossler
(Oxford)
Abstract

Let p>0 be a prime number. We shall describe a short Frobenius-theoretic proof of the Adams-Riemann-Roch theorem for the p-th Adams operation, when the involved schemes live in characteristic p and the morphism is smooth. This result implies the Grothendieck-Riemann-Roch theorem for smooth morphisms in positive characteristic and the Hirzebruch-Riemann-Roch theorem in any characteristic. This is joint work with R. Pink.

Tue, 10 Nov 2015

15:45 - 16:45
L4

The spectrum of the inertia operator on the motivic Hall algebra

Kai Behrend
(UBC Vancouver)
Abstract

Following an idea of Bridgeland, we study the operator on the K-group of algebraic stacks, which takes a stack to its inertia stack.  We prove that the inertia operator is diagonalizable when restricted to nice enough stacks, including those with algebra stabilizers.  We use these results to prove a structure theorem for the motivic Hall algebra of a projective variety, and give a more conceptual definition of virtually indecomposable stack function.  This is joint work with Pooya Ronagh.

Tue, 03 Nov 2015

15:45 - 16:45
L4

Poles of maximal order of Igusa zeta functions

Johannes Nicaise
(Imperial)
Abstract

Igusa's p-adic zeta function $Z(s)$ attached to a polynomial $f$ in $N$ variables is a meromorphic function on the complex plane that encodes the numbers of solutions of the equation $f=0$ modulo powers of a prime $p$. It is expressed as a $p$-adic integral, and Igusa proved that it is rational in $p^{-s}$ using resolution of singularities and the change of variables formula. From this computation it is immediately clear that the order of a pole of $Z(s)$ is at most $N$, the number of variables in $f$. In 1999, Wim Veys conjectured that the only possible pole of order $N$ of the so-called topological zeta function of $f$ is minus the log canonical threshold of $f$. I will explain a proof of this conjecture, which also applies to the $p$-adic and motivic zeta functions. The proof is inspired by non-archimedean geometry and Mirror Symmetry, but the main technique that is used is the Minimal Model program in birational geometry. This talk is based on joint work with Chenyang Xu.

Tue, 03 Nov 2015

14:15 - 15:15
L4

Open invariants and crepant transformations

Renzo Cavalieri
(Colorado State)
Abstract

The question that the Crepant Resolution Conjecture (CRC) wants to address is: given an orbifold X that admits a repant resolution Y, can we systematically compare the Gromov-Witten theories of the two spaces? That this should happen was first observed by physicists and the question was imported into mathematics by Y.Ruan, who posited it as the search for an isomorphism in the quantum cohomologies of the two spaces. In the last fifteen years this question has evolved and found different formulations which various degree of generality and validity. Perhaps the most powerful approach to the CRC is through Givental's formalism. In this case, Coates, Corti, Iritani and Tseng propose that the CRC should consist of the natural comparison of geometric objects constructed from the GW potential fo the space. We explore this approach in the setting of open GW invariants. We formulate an open version of the CRC using this formalism, and make some verifications. Our approach is well tuned with Iritani's approach to the CRC via integral structures, and it seems to suggest that open invariants should play a prominent role in mirror symmetry. 

Tue, 27 Oct 2015

15:45 - 16:45
L4

Point-like bounding chains in open Gromov-Witten theory

Sara Tukachinsky
(Hebrew University of Jerusalem)
Abstract

Over a decade ago Welschinger defined invariants of real symplectic manifolds of complex dimension 2 and 3, which count $J$-holomorphic disks with boundary and interior point constraints. Since then, the problem of extending the definition to higher dimensions has attracted much attention.
  We generalize Welschinger's invariants with boundary and interior constraints to higher odd dimensions using the language of $A_\infty$-algebras and bounding chains. The bounding chains play the role of boundary point constraints. The geometric structure of our invariants is expressed algebraically in a version of the open WDVV equations. These equations give rise to recursive formulae which allow the computation of all invariants for $\mathbb{CP}^n$.
  This is joint work with Jake Solomon.