Forthcoming events in this series


Tue, 21 Feb 2017

15:45 - 16:45
L4

Group actions on quiver moduli spaces

Vicky Hoskins
(Freie Universität Berlin)
Abstract

We consider two types of actions on moduli spaces of quiver representations over a field k and we decompose their fixed loci using group cohomology. First, for a perfect field k, we study the action of the absolute Galois group of k on the points of this quiver moduli space valued in an algebraic closure of k; the fixed locus is the set of k-rational points and we obtain a decomposition of this fixed locus indexed by the Brauer group of k. Second, we study algebraic actions of finite groups of quiver automorphisms on these moduli spaces; the fixed locus is decomposed using group cohomology and each component has a modular interpretation. If time permits, we will describe the symplectic and holomorphic geometry of these fixed loci in hyperkaehler quiver varieties. This is joint work with Florent Schaffhauser.

Tue, 07 Feb 2017

15:45 - 16:45
L4

Quantum character varieties and the double affine Hecke algebra

David Jordan
(Edinburgh)
Abstract

The character variety of a manifold is a moduli space of representations of its fundamental group into some fixed gauge group.  In this talk I will outline the construction of a fully extended topological field theory in dimension 4, which gives a uniform functorial quantization of the character varieties of low-dimensional manifolds, when the gauge group is reductive algebraic (e.g. $GL_N$).

I'll focus on important examples in representation theory arising from the construction, in genus 1:  spherical double affine Hecke algebras (DAHA), difference-operator q-deformations of the Grothendieck-Springer sheaf, and the construction of irreducible DAHA modules mimicking techniques in classical geometric representation theory.  The general constructions are joint with David Ben-Zvi, Adrien Brochier, and Noah Snyder, and applications to representation theory of DAHA are joint with Martina Balagovic and Monica Vazirani.

Tue, 31 Jan 2017

15:45 - 16:45
L4

Universal flops and noncommutative algebras

Joe Karmazyn
(Sheffield)
Abstract

A classification of simple flops on smooth threefolds in terms of the length invariant was given by Katz and Morrison, who showed that the length must take the value 1,2,3,4,5, or 6. This classification was produced by understanding simultaneous (partial) resolutions that occur in the deformation theory of A, D, E Kleinian surface singularities. An outcome of this construction is that all simple threefold flops of length l occur by pullback from a "universal flop" of length l. Curto and Morrison understood the universal flops of length 1 and 2 using matrix factorisations. I aim to describe how these universal flops can understood for lengths >2 via noncommutative algebra.

Tue, 17 Jan 2017

15:45 - 16:45
L4

The universal property of derived geometry

Andrew MacPherson
(London)
Abstract

I'll show how a simple universal property attaches a category of derived manifolds to any category with finite products and some suitable notion of "topology". Starting with the category of real Euclidean spaces and infinitely differentiable maps yields the category of derived smooth manifolds studied by D. Spivak and others, while starting with affine spaces over some ring and polynomial maps produces a flavour of the derived algebraic geometry of Lurie and Toen-Vezzosi.

I'll motivate this from the differentiable setting by showing that the universal property easily implies all of D. Spivak's axioms for being "good for intersection theory on manifolds".

Tue, 29 Nov 2016

15:45 - 16:45
L4

On short time existence of Lagrangian mean curvature flow

Kim Moore
(Cambridge)
Abstract

One of the simplest, and yet largely still open, questions that one can ask about special Lagrangian submanifolds is whether they exist in a given homology class. One possible approach to this problem is to evolve a given Lagrangian submanifold under mean curvature flow in the hope of reaching a special Lagrangian submanifold in the same homology class. It is known, however, that even for 'nice' initial conditions the flow will develop singularities in finite time. 

I will talk about a joint work with Tom Begley, in which we prove a short time existence result for Lagrangian mean curvature flow, where the initial condition is a Lagrangian submanifold of complex Euclidean space with a certain type of singularity. This is a first step to proving, as conjectured by Joyce, that one may 'continue' Lagrangian mean curvature flow after the occurrence of singularities.

Tue, 22 Nov 2016

15:45 - 16:45
L4

The Cohomological McKay Correspondence and Symplectic Cohomology

Mark McLean
(Stony Brook)
Abstract

Suppose that we have a finite quotient singularity $\mathbb C^n/G$ admitting a crepant resolution $Y$ (i.e. a resolution with $c_1 = 0$). The cohomological McKay correspondence says that the cohomology of $Y$ has a basis given by irreducible representations of $G$ (or conjugacy classes of $G$). Such a result was proven by Batyrev when the coefficient field $\mathbb F$ of the cohomology group is $\mathbb Q$. We give an alternative proof of the cohomological McKay correspondence in some cases by computing symplectic cohomology+ of $Y$ in two different ways. This proof also extends the result to all fields $\mathbb F$ whose characteristic does not divide $|G|$ and it gives us the corresponding basis of conjugacy classes in $H^*(Y)$. We conjecture that there is an extension to certain non-crepant resolutions. This is joint work with Alex Ritter.

Tue, 15 Nov 2016

15:45 - 16:45
L4

The Bayer-Macri map for compact support

Alastair Craw
(Bath)
Abstract

I'll discuss recent joint work with Arend Bayer and Ziyu Zhang in which we define a nef divisor class on moduli spaces of Bridgeland-stable objects in the derived category of coherent sheaves with compact support, generalising earlier work of Bayer and Macri for smooth projective varieties. This work forms part of a programme to study the birational geometry of moduli spaces of Bridgeland-stable objects in the derived category of varieties that need not be smooth and projective.

Tue, 08 Nov 2016

15:45 - 16:45
L4

Towards a compactification of the moduli space of K3 surfaces of degree 2

Alan Thompson
(Warwick)
Abstract

Ever since moduli spaces of polarised K3 surfaces were constructed in the 1980's, people have wondered about the question of compactification: can one make the moduli space of K3 surfaces compact by adding in some boundary components in a "nice" way? Ideally, one hopes to find a compactification that is both explicit and geometric (in the sense that the boundary components provide moduli for degenerate K3's). I will present on joint work in progress with V. Alexeev, which aims to solve the compactification problem for the moduli space of K3 surfaces of degree 2.

Tue, 01 Nov 2016

15:45 - 16:45
L4

A geometric approach to Hall algebras

Adam Gal
(Oxford)
Abstract

The Hall algebra can be constructed using the Waldhausen S-construction. We will give a systematic recipe for this and show how it extends naturally to give a bi-algebraic structure. As a result we obtain a more transparent proof of Green's theorem about the bi-algebra structure on the Hall algebra.

Tue, 18 Oct 2016
15:45
L4

Separating invariants and local cohomology

Emilie DuFresne
(Oxford)
Abstract

The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.

(Joint with Jack Jeffries)

Mon, 11 Jul 2016

16:30 - 17:30
L3

(COW SEMINAR) Monodromy and derived equivalences

Andrei Okounkov
(Columbia)
Abstract

This is will be a progress report on our long-ongoing joint work with Bezrukavnikov on lifting the monodromy of the quantum differential equation for symplectic resolutions to automorphisms of their derived categories of coherent sheaves. I will attempt to define the ingredient that go both into the problem and into its solution.
 

Mon, 11 Jul 2016

14:45 - 15:45
L3

(COW SEMINAR) Higgs bundles and determinant divisors

Nigel Hitchin
(Oxford)
Abstract

Following an idea of Gaiotto, a symplectic representation of a complex Lie group G defines a complex Lagrangian subvariety inside the moduli space of G-Higgs bundles. The talk will discuss the case of G=SL(2) and its link with determinant  divisors, or equivalently Brill-Noether loci, in the moduli space of semistable SL(2)-bundles. 

Mon, 11 Jul 2016

13:30 - 14:30
L3

(COW SEMINAR) Categorification of shifted symplectic geometry using perverse sheaves

Dominic Joyce
(Oxford)
Abstract

Given a (-1)-shifted symplectic derived scheme or stack (X,w) over C equipped with an orientation, we explain how to construct a perverse sheaf P on the classical truncation of X so that its hypercohomology H*(P) can be regarded as a categorification of (or linearisation of) X. Given also a Lagrangian morphism L -> X equipped with a relative orientation, we outline a programme in progress to construct a natural morphism of constructible complexes on the truncation of L from the (shifted) constant complex on L to a suitable pullback of P to L. The morphisms and resulting hypercohomology classes are expected to satisfy various identities under products, composition of Lagrangian correspondences, etc. This programme will have interesting applications, such as proving associativity of a Kontsevich-Soibelman type COHA multiplication on H*(P) when X is the derived moduli stack of coherent sheaves on a Calabi-Yau 3-fold Y, and defining Lagrangian Floer cohomology and the Fukaya cat!
 egory of an algebraic or complex symplectic manifold S.

Tue, 14 Jun 2016

15:45 - 16:45
L4

Symplectic homology for cobordisms

Alexandru Oancea
(Jussieu)
Abstract

I will present a definition of symplectic homology groups for pairs of Liouville cobordisms with fillings, and explain how these fit into a formalism of homology theory similar to that of Eilenberg and Steenrod. This construction allows to understand form a unified point of view many structural results involving Floer homology groups, and yields new applications. Joint work with Kai Cieliebak.

Tue, 07 Jun 2016

15:45 - 16:45
L4

Matrix factorisation of Morse-Bott functions

Constantin Teleman
(Oxford)
Abstract

For a holomorphic function (“superpotential”)  W: X —> C on a complex manifold X, one defines the (2-periodic) matrix factorisation category MF(X;W), which is supported on the critical locus Crit(W) of W. At a Morse singularity, MF(X;W) is equivalent to the category of modules over the Clifford algebra on the tangent space TX. It had been suggested by Kapustin and Rozansky that, for Morse-Bott W, MF(X;W) should be equivalent to the (2-periodicised) derived category of Crit(W), twisted by the Clifford algebra of the normal bundle. I will discuss why this holds when the first neighbourhood of Crit(W) splits, why it fails in general, and will explain the correct general statement.

Tue, 31 May 2016

15:45 - 16:45
L4

Non-reductive GIT for graded groups and curve counting

Greg Berczi
(Oxford)
Abstract
I will start with a short report on recent progress in constructing quotients by actions of non-reductive algebraic groups and extending Mumford's geometric invariant theory to a wide class of non-reductive linear algebraic groups which we call graded groups. I will then explain how certain components of the Hilbert scheme of points on smooth varieties can be described as non-reductive quotients and why this description is especially efficient to study the topology of Hilbert schemes. In particular I will explain how equivariant localisation can be used to develop iterated residue formulae for tautological integrals on geometric subsets of Hilbert schemes and I present new formulae counting curves on surfaces (and more generally hypersurfaces in smooth varieties) with given singularity classes. This talk is based on joint works with Frances Kirwan, Thomas Hawes, Brent Doran and Andras Szenes. 
Tue, 10 May 2016

15:30 - 17:00
L4

Cohomological DT theory beyond the integrality conjecture

Ben Davison
(EPFL)
Abstract
The integrality conjecture is one of the central conjectures of the DT theory of quivers with potential, which itself is a key tool in understanding the local calculation of DT invariants on moduli spaces of coherent sheaves, as well as having deep links to geometric representation theory, noncommutative geometry and algebraic combinatorics.  I will explain some of the ingredients of the proof of this conjecture by myself and Sven Meinhardt.  In fact the proof gives much more than the original conjecture, which ultimately concerns identities in a Grothendieck ring of mixed Hodge structures associated to moduli spaces of representations, and proves that these equalities categorify to isomorphisms in the category of mixed Hodge structures.  I'll explain what this all means, as well as giving some applications of the categorified version of the theory.
Tue, 19 Apr 2016

15:45 - 16:45
L3

Cutting and pasting in algebraic geometry

Ravi Vakil
(Stanford)
Abstract

Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X,  [X] = [U] + [X - U]. Multiplicative structure:  [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology.  I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural).  A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.

Tue, 08 Mar 2016

15:45 - 16:45
L4

The wall-crossing formula and spaces of quadratic differentials

Tom Bridgeland
(Sheffield)
Abstract

The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.

Tue, 01 Mar 2016

15:45 - 16:45
L4

Topological Fukaya category and homological mirror symmetry

Nicolo Sibilla
(UBC Vancouver)
Abstract

The topological Fukaya category is a combinatorial model of the Fukaya category of exact symplectic manifolds which was first proposed by Kontsevich. In this talk I will explain work in progress (joint with J. Pascaleff and S. Scherotzke) on gluing techniques for the topological Fukaya category that are closely related to Viterbo functoriality. I will emphasize applications to homological mirror symmetry for three-dimensional CY LG models, and to Bondal's and Fang-Liu-Treumann-Zaslow's coherent constructible correspondence for toric varieties.  

Tue, 23 Feb 2016

15:45 - 16:45
L4

Log stable maps and Morse theory of toric varieties

William (Danny) Gillam
(Bogazici University Turkey)
Abstract

We will discuss a result to the effect that the moduli space of log stable maps to a toric variety X is "the same" as the Morse-theoretic moduli space of broken gradient flow lines in the "differentiable realization" Y of the fan for X.  This is joint work with Sam Molcho.