Forthcoming events in this series
15:45
Cobordisms between tangles
Abstract
In a previous work, we introduced a refinement of Juhasz’s sutured Floer homology, and constructed a minus theory for sutured manifolds, called sutured Floer chain complex. In this talk, we introduce a new description of sutured manifolds as “tangles” and describe a notion of cobordism between them. Using this construction, we define a cobordism map between the corresponding sutured Floer chain complexes. We also discuss some possible applications. This is a joint work with Eaman Eftekhary.
Infinitely many monotone Lagrangian Tori in CP^2
Abstract
15:45
Hamiltonian and quasi-Hamiltonian reduction via derived symplectic geometry
Abstract
I will explain an approach to Hamiltonian reduction using derived
symplectic geometry. Roughly speaking, the reduced space can be
presented as an intersection of two Lagrangians in a shifted symplectic
space, which therefore carries a natural symplectic structure. A slight
modification of the construction gives rise to quasi-Hamiltonian
reduction. This talk will also serve as an introduction to the wonderful
world of derived symplectic geometry where statements that morally ought
to be true are indeed true.
15:45
Exotic spheres and the topology of the symplectomorphism group
Abstract
Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.
Joint work with Jonny Evans.
Torus action and Segre classes in the context of the Green-Griffiths conjecture
Abstract
The goal of this second talk is to study the existence of global jet differentials. Thanks to the algebraic Morse inequalities, the problem reduces to the computation of a certain Chern number on the Demailly tower of projectivized jet bundles. We will describe the significant simplification due to Berczi consisting in integrating along the fibers of this tower by mean of an iterated residue formula. Beside the original argument coming from equivariant geometry, we will explain our alternative proof of such a formula and we will particularly be interested in the interplay between the two approaches.
Jet techniques for hyperbolicity problems
Abstract
Hyperbolicity is the study of the geometry of holomorphic entire curves $f:\mathbb{C}\to X$, with values in a given complex manifold $X$. In this introductary first talk, we will give some definitions and provide historical examples motivating the study of the hyperbolicity of complements $\mathbb{P}^{n}\setminus X_{d}$ of projective hypersurfaces $X_{d}$ having sufficiently high degree $d\gg n$.
Then, we will introduce the formalism of jets, that can be viewed as a coordinate free description of the differential equations that entire curves may satisfy, and explain a successful general strategy due to Bloch, Demailly, Siu, that relies in an essential way on the relation between entire curves and jet differentials vanishing on an ample divisor.
Recent directions in derived geometry
Abstract
We will give an idea of derived algebraic geometry and sketch a number of more or less recent directions, including derived symplectic geometry, derived Poisson structures, quantizations of moduli spaces, derived analytic geometry, derived logarithmic geometry and derived quadratic structures.
The geometry of auctions and competitive equilibrium with indivisible goods
Abstract
Auctioneers may wish to sell related but different indivisible goods in
a single process. To develop such techniques, we study the geometry of
how an agent's demanded bundle changes as prices change. This object
is the convex-geometric object known as a `tropical hypersurface'.
Moreover, simple geometric properties translate directly to economic
properties, providing a new taxonomy for economic valuations. When
considering multiple agents, we study the unions and intersections of
the corresponding tropical hypersurfaces; in particular, properties of
the intersection are deeply related to whether competitive equilibrium
exists or fails. This leads us to new results and generalisations of
existing results on equilibrium existence. The talk will provide an
introductory tour to relevant economics to show the context of these
applications of tropical geometry. This is joint work with Paul
Klemperer.
Morse theory in representation theory and algebraic geometry
Abstract
Hamiltonian reduction arose as a mechanism for reducing complexity of systems in mechanics, but it also provides a tool for constructing complicated but interesting objects from simpler ones. I will illustrate how this works in representation theory and algebraic geometry via examples. I will describe a new structure theory, motivated by Hamiltonian reduction (and in particular the Morse theory that results), for some categories (of D-modules) of interest to representation theorists. I will then explain how this implies a modified form of "hyperkahler Kirwan surjectivity" for the cohomology of certain Hamiltonian reductions. The talk will not assume that members of the audience know the meaning of any of the above-mentioned terms. The talk is based on joint work with K. McGerty.
On the Gromov width of polygon spaces
Abstract
After Gromov's foundational work in 1985, problems of symplectic embeddings lie in the heart of symplectic geometry. The Gromov width of a symplectic manifold
$(M, \omega)$ is a symplectic invariant that measures, roughly speaking, the size of the biggest ball we can symplectically embed in it. I will discuss tecniques to compute the Gromov width of a special family of symplectic manifolds, the moduli spaces of polygons in real $3$-space. Under some genericity assumptions on the edge lengths, the polygon space is a symplectic manifold; in fact, it is a symplectic reduction of Grassmannian of 2-planes in complex $n$-space. After introducing this family of manifolds we will concentrate on the spaces of 5-gons and calculate for their Gromov width. This is joint work with Milena Pabiniak, IST Lisbon.
Mirror symmetry without localisation
Abstract
Mirror Symmetry predicts a surprising relationship between the virtual numbers of degree-d rational curves in a target space X and variations of Hodge structure on a different space X’, called the mirror to X. Concretely, it predicts that one can compute genus-zero Gromov–Witten invariants (which are the virtual numbers of rational curves) in terms of hypergeometric functions (which are the solutions to a differential equation that controls the variation of Hodge structure). Existing proofs of this rely on beautiful but fearsomely complicated localization calculations in equivariant cohomology. I will describe a new proof of the Mirror Theorem, for a broad range of target spaces X, which is much simpler and more conceptual. This is joint work with Cristina Manolache.
The Crepant Transformation Conjecture and Fourier--Mukai Transforms
Abstract
Comparing curve-counting invariants
Abstract
Counting curves with given topological properties in a variety is a very old question. Example questions are: How many conics pass through five points in a plane, how many lines are there on a Calabi-Yau 3-fold? There are by now several ways to count curves and the numbers coming from different curve counting theories may be different. We would then like to have methods to compare these numbers. I will present such a general method and show how it works in the case of stable maps and stable quasi-maps.
Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties II
Abstract
I will discuss some very well studied cohomology groups that turn out to be captured by the machinery of critical CoHAs, for example the compactly supported cohomology of singular quiver varieties and untwisted character varieties. I will explain the usefulness of this extra CoHA structure on these groups, starting with a new proof of the Kac conjecture, and discuss a conjectural form for the CoHA associated to untwisted character varieties that provides a new way to think about the conjectures of Hausel and Rodriguez-Villegas. Finally I will discuss an approach to purity for the compactly supported cohomology of quiver varieties and a related approach to a conjecture of Shiffmann and Vasserot, analogous to Kirwan surjectivity for the stack of commuting matrices.
Freeness of critical cohomological Hall algebras, Kac polynomials and character varieties I
Abstract
The cohomological Hall algebra of vanishing cycles associated to a quiver with potential is a categorification of the refined DT invariants associated to the same data, and also a very powerful tool for calculating them and proving positivity and integrality conjectures. This becomes especially true if the quiver with potential is "self dual" in a sense to be defined in the talk. After defining and giving a general introduction to the relevant background, I will discuss the main theorem regarding such CoHAs: they are free supercommutative.
Factorization homology is a fully extended TFT
Abstract
We will start with a recollection on factorization algebras and factorization homology. We will then explain what fully extended TFTs are, after Jacob Lurie. And finally we will see how factorization homology can be turned into a fully extended TFT. This is a joint work with my student Claudia Scheimbauer.
Lagrangian structures on derived mapping stacks
Abstract
We will explain how the result of Pantev-Toën-Vaquié-Vezzosi, about shifted symplectic structures on mapping stacks, can be extended to relative mapping stacks and Lagrangian structures. We will also provide applications in ordinary symplectic geometry and topological field theories.
Buildings, Spectral Networks, and the Asymptotics of Monodromy
Abstract
The talk will focus on how the asymptotic behavior of the Riemann-Hilbert correspondence (and, conjecturally, the non-abelian Hodge correspondence) on a Riemann surface is controlled by certain harmonic maps from the Riemann surface to affine buildings. This is part of joint work with Katzarkov, Noll and Simpson, which revisits, from the perspective afforded by the theory of harmonic maps to buildings, the work of Gaiotto, Moore and Neitzke on spectral networks, WKB problems, BPS states and wall-crossing.
(n+ε)-dimensional TQFTs and a higher dimensional Deligne conjecture
Abstract
The classical Deligne conjecture (now a theorem with several published proofs) says that chains on the little disks operad act on Hochschild cohomology. I'll describe a higher dimensional generalization of this result. In fact, even in the dimension of the original Deligne conjecture the generalization has something new to say: Hochschild chains and Hochschild cochains are the first two members of an infinite family of chain complexes associated to an arbitrary associative algebra, and there is a colored, higher genus operad which acts on these chain complexes. The Connes differential and Gerstenhaber bracket are two of the simplest generators of the homology of this operad, and I'll show that there exist additional, independent generators. These new generators are close cousins of Connes and Gerstenhaber which, so far as I can tell, have not been described in the literature.