Forthcoming events in this series
14:00
The Structure of Counterexamples to Vaught's Conjecture
Abstract
Counterexamples to Vaught's Conjecture regarding the number of countable
models of a theory in a logical language, may felicitously be studied by investigating a tree
of types of different arities and belonging to different languages. This
tree emerges from a category of topological spaces, and may be studied as such, without
reference to the original logic. The tree has an intuitive character of absoluteness
and of self-similarity. We present theorems expressing these ideas, some old and some new.
16:00
Algebraic characterisation of convergence
Abstract
> Fréchet-Urysohness, we can translate this property into other structural
> forms for many problems and classes of spaces. In this talk, I will
> recap this internal characterisation and translate the properties of
> being radial / Fréchet-Urysohn (Stone-Čech, Hewitt) into the prime ideal
> structure on C*(X) / C(X) for Tychonoff spaces, with a view to reaching
> out to other parts of algebra, e.g. C*-algebras, algebraic geometry, etc.
16:00
The set functions T, K and S.
Abstract
A continuum is a non-empty compact connected metric space. Given a continuum X let P(X) be the power set of X. We define the following set functions:
T:P(X) to P(X) given by, for each A in P(X), T(A) = X \ { x in X : there is a continuum W such that x is in Int(W) and W does not intersect A}
K:P(X) to P(X) given by, for each A in P(X), K(A) = Intersection{ W : W is a subcontinuum of X and A is in the interior of W}
S:P(X) to P(X) given by, for each A in P(X), S(A) = { x in T(A) : A intersects T(x)}
Some properties and relations between these functions are going to be presented.
14:30
Point versus set topology: constructing examples by splitting points
Abstract
The main result is to give a separable, Cech-complete, 0-dimensional Moore space that is not Scott-domain representable. This result answered questions in the literature; it is known that each complete mertrisable space is Scott-domain representable. The talk will give a history of the techniques involved.
16:00
Baire, Berz, Burton Jones and Steinhaus: linearity from subadditivity
Abstract
Berz used the Hahn-Banach Theorem over Q to prove that the graph of a measurable subadditive function that is non-negatively Q-homogeneous consists of two lines through the origin. I will give a proof using the density topology and Steinhaus’ Sum-set Theorem. This dualizes to a much simpler category version: a `Baire-Berz Theorem’. I will give the broader picture of this using F. Burton Jones’ analysis of additivity versus linearity. Shift-compactness and special subsets of R will be an inevitable ingredient. The talk draws on recent work with Nick Bingham and separately with Harry I. Miller.
16:00
Separation properties and restrictions on the cardinality of topological spaces
16:00
Separation properties and restrictions on the cardinality of topological spaces
16:00
Symbolic dynamics: taking another look at complex quadratic maps
Abstract
Complex dynamical systems have been very well studied in recent years, in particular since computer graphics now enable us to peer deep into structures such as the Mandlebrot set and Julia sets, which beautifully illustrate the intricate dynamical behaviour of these systems. Using new techniques from Symbolic Dynamics, we demonstrate previously unknown properties of a class of quadratic maps on their Julia sets.
16:00
Structural analysis of Monogamy and Macroscopic Correlations
Abstract
We consider the emergence of classical correlations in macroscopic quantum systems, and its connection to monogamy relations for violation of Bell-type inequalities. We work within the framework of Abramsky and Brandenburger [1], which provides a unified treatment of non-locality and contextuality in the general setting of no-signalling empirical models. General measurement scenarios are represented by simplicial complexes that capture the notion of compatibility of measurements. Monogamy and locality/noncontextuality of macroscopic correlations are revealed by our analysis as two sides of the same coin: macroscopic correlations are obtained by averaging along a symmetry (group action) on the simplicial complex of measurements, while monogamy relations are exactly the inequalities that are invariant with respect to that symmetry. Our results exhibit a structural reason for monogamy relations and consequently for the classicality of macroscopic correlations in the case of multipartite scenarios, shedding light on and generalising the results in [2,3].More specifically, we show that, however entangled the microscopic state of the system, and provided the number of particles in each site is large enough (with respect to the number of allowed measurements), only classical (local realistic) correlations will be observed macroscopically. The result depends only on the compatibility structure of the measurements (the simplicial complex), hence it applies generally to any no-signalling empirical model. The macroscopic correlations can be defined on the quotient of the simplicial complex by the symmetry that lumps together like microscopic measurements into macroscopic measurements. Given enough microscopic particles, the resulting complex satisfies a structural condition due to Vorob'ev [4] that is necessary and sufficient for any probabilistic model to be classical. The generality of our scheme suggests a number of promising directions. In particular, they can be applied in more general scenarios to yield monogamy relations for contextuality inequalities and to study macroscopic non-contextuality.
[1] Samson Abramsky and Adam Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New Journal of Physics 13 (2011), no. 113036.
[2] MarcinPawłowski and Caslav Brukner, Monogamy of Bell’s inequality violations in nonsignaling theories, Phys. Rev. Lett. 102 (2009), no. 3, 030403.
[3] R. Ramanathan, T. Paterek, A. Kay, P. Kurzynski, and D. Kaszlikowski, Local realism of macroscopic correlations, Phys. Rev. Lett. 107 (2011), no. 6, 060405.
[4] N.N.Vorob’ev, Consistent families of measures and their extensions, Theory of Probability and its Applications VII (1962), no. 2, 147–163, (translated by N. Greenleaf, Russian original published in Teoriya Veroyatnostei i ee Primeneniya).
16:00
Research Workshop 2 on 'Duality Theory in Algebra, Logic and Computer Science'.
Abstract
Organisers: Hilary Priestley, Drew Moshier and Leo Cabrer.
This will be devoted to the applications of dualities to logic and algebra, focusing on general techniques. Thus it will seek to complement the specialised coverage in meetings devoted to, for example, modal logic, residuated structures and many-valued logics, or coalgebras. The featured topics for the Workshop will be drawn from completions of ordered structures, and applications; admissible rules, unification theory, interpolation and amalgamation; aspects of many-valued and substructural logics and ordered algebraic structures. Keynote speakers will be Leo Cabrer and Mai Gehrke.
'Galway' Topology Symposium.
Abstract
Chief Organiser: Shari Levine. Main speakers: Alexander Arhangel'skii, Alan Dow, Aisling McCluskey, Jan van Mill, Frank Tall, Vladimir Tkachuk
Contact for further information: @email
A space that admits all possible orbit spectra of homeomorphisms of uncountable compact metric spaces
Abstract
Joint work with: Sina Greenwood, Brian Raines and Casey Sherman
Abstract: We say a space $X$ with property $\C P$ is \emph{universal} for orbit spectra of homeomorphisms with property $\C P$ provided that if $Y$ is any space with property $\C P$ and the same cardinality as $X$ and $h:Y\to Y$ is any (auto)homeomorphism then there is a homeomorphism$g:X\to X$ such that the orbit equivalence classes for $h$ and $g$ are isomorphic. We construct a compact metric space $X$ that is universal for homeomorphisms of compact metric spaces of cardinality the continuum. There is no universal space for countable compact metric spaces. In the presence of some set theoretic assumptions we also give a separable metric space of size continuum that is universal for homeomorphisms on separable metric spaces.
Non-separable Effros Theorem, and shift compactness versus ample genericity
16:00
Duality and Sahlqvist theorem fro Vietoris coalgebras on compact Hausdorff spaces.
When you can put a linear order on a set so that an arbitrary self map on that set is order preserving?
16:00
Topological dualities for distributive meet-semilattices, implicative semilattices and Hilbert algebras
Abstract
I will first present Priestley style topological dualities for
several categories of distributive meet-semilattices
and implicative semilattices developed by G. Bezhanishvili and myself.
Using these dualities I will introduce a topological duality for Hilbert
algebras,
the algebras that correspond to the implicative reduct of intuitionistic logic.
14:00
Relational semantics for Belnap's "useful four-valued logic", and beyond: what Belnap should have said, but didn't
09:00
09:00
Admissibility and Unification through Natural Duality >
Abstract
Dualities of various types have been used by different authors to
describe free and projective objects in a large
number of classes of algebras. Particularly, natural dualities provide a
general tool to describe free objects. In
this talk we present two interesting applications of this fact.
We first provide a combinatorial classification of unification problems
by their unification type for the
varieties of Bounded Distributive Lattices, Kleene algebras, De Morgan
algebras. Finally we provide axiomatizations forsingle
and multiple conclusion admissible rules for the varieties of Kleene
algebras, De Morgan algebras, Stone algebras.
Interlaced Lattices
Abstract
I will give an overview of some of the most interesting algebraic-lattice theoretical results on bilattices. I will focus in particular on the product construction that is used to represent a subclass of bilattices, the so-called 'interlaced bilattices', mentioning some alternative strategies to prove such a result. If time allows, I will discuss other algebras of logic related to bilattices (e.g., Nelson lattices) and their product representation.