Forthcoming events in this series
Dense $H$-free graphs are almost $(\chi(H)-1)$-partite
Abstract
Andr\'asfai, Erdös and S\'os proved a stability result for Zarankiewicz' theorem: $K_{r+1}$-free graphs with minimum degree exceeding $(3r-4)n/(3r-1)$ are forced to be $r$-partite. Recently, Alon and Sudakov used the Szemer\'edi Regularity Lemma to obtain a corresponding stability result for the Erdös-Stone theorem; however this result was not best possible. I will describe a simpler proof (avoiding the Regularity Lemma) of a stronger result which is conjectured to be best possible.
Higher Order Tournaments
Abstract
The Power of Choice in a Generalized Polya Urn Model
Abstract
Random graphs with few disjoint cycles
Abstract
Fix a positive integer $k$, and consider the class of all graphs which do not have $k+1$ vertex-disjoint cycles. A classical result of Erdos and P\'{o}sa says that each such graph $G$ contains a blocker of size at most $f(k)$. Here a {\em blocker} is a set $B$ of vertices such that $G-B$ has no cycles.
We give a minor extension of this result, and deduce that almost all such labelled graphs on vertex set $1,\ldots,n$ have a blocker of size $k$. This yields an asymptotic counting formula for such graphs; and allows us to deduce further properties of a graph $R_n$ taken uniformly at random from the class: we see for example that the probability that $R_n$ is connected tends to a specified limit as $n \to \infty$.
There are corresponding results when we consider unlabelled graphs with few disjoint cycles. We consider also variants of the problem involving for example disjoint long cycles.
This is joint work with Valentas Kurauskas and Mihyun Kang.
Oblivious Routing in the $L_p$ norm
Abstract
Gupta et al. introduced a very general multi-commodity flow problem in which the cost of a given flow solution on a graph $G=(V,E)$ is calculated by first computing the link loads via a load-function l, that describes the load of a link as a function of the flow traversing the link, and then aggregating the individual link loads into a single number via an aggregation function.
We show the existence of an oblivious routing scheme with competitive ratio $O(\log n)$ and a lower bound of $\Omega(\log n/\logl\og n)$ for this model when the aggregation function agg is an $L_p$-norm.
Our results can also be viewed as a generalization of the work on approximating metrics by a distribution over dominating tree metrics and the work on minimum congestion oblivious. We provide a convex combination of trees such that routing according to the tree distribution approximately minimizes the $L_p$-norm of the link loads. The embedding techniques of Bartal and Fakcharoenphol et al. [FRT03] can be viewed as solving this problem in the $L_1$-norm while the result on congestion minmizing oblivious routing solves it for $L_\infty$. We give a single proof that shows the existence of a good tree-based oblivious routing for any $L_p$-norm.
A general class of self-dual percolation models
Abstract
Since Kesten's result, more complicated duality properties have been used to determine a variety of other critical probabilities. Recently, Scullard and Ziff have described a very general class of self-dual percolation models; we show that for the entire class (in fact, a larger class), self-duality does imply criticality.
The simple harmonic urn
Abstract
The simple harmonic urn is a discrete-time stochastic process on $\mathbb Z^2$ approximating the phase portrait of the harmonic oscillator using very basic transitional probabilities on the lattice, incidentally related to the Eulerian numbers.
This urn which we consider can be viewed as a two-colour generalized Polya urn with negative-positive reinforcements, and in a sense it can be viewed as a “marriage” between the Friedman urn and the OK Corral model, where we restart the process each time it hits the horizontal axes by switching the colours of the balls. We show the transience of the process using various couplings with birth and death processes and renewal processes. It turns out that the simple harmonic urn is just barely transient, as a minor modification of the model makes it recurrent.
We also show links between this model and oriented percolation, as well as some other interesting processes.
This is joint work with E. Crane, N. Georgiou, R. Waters and A. Wade.
Prim's algorithm and self-organized criticality, in the complete graph
Abstract
Let $G=(V,E)$ be a graph with weights $\{w_e : e \in E\}$, and assume all weights are distinct. If $G$ is finite, then the well-known Prim's algorithm constructs its minimum spanning tree in the following manner. Starting from a single vertex $v$, add the smallest weight edge connecting $v$ to any other vertex. More generally, at each step add the smallest weight edge joining some vertex that has already been "explored" (connected by an edge) to some unexplored vertex.
If $G$ is infinite, however, Prim's algorithm does not necessarily construct a spanning tree (consider, for example, the case when the underlying graph is the two-dimensional lattice ${\mathbb Z}^2$, all weights on horizontal edges are strictly less than $1/2$ and all weights on vertical edges are strictly greater than $1/2$).
The behavior of Prim's algorithm for *random* edge weights is an interesting and challenging object of study, even
when the underlying graph is extremely simple. This line of research was initiated by McDiarmid, Johnson and Stone (1996), in the case when the underlying graph is the complete graph $K_n$. Recently Angel et. al. (2006) have studied Prim's algorithm on regular trees with uniform random edge weights. We study Prim's algorithm on $K_n$ and on its infinitary analogue Aldous' Poisson-weighted infinite tree. Along the way, we uncover two new descriptions of the Poisson IIC, the critical Poisson Galton-Watson tree conditioned to survive forever.
Joint work with Simon Griffiths and Ross Kang.
A better algorithm for random k-SAT
Abstract
Approximate groups
Abstract
Let $A$ be a finite set in some ambient group. We say that $A$ is a $K$-approximate group if $A$ is symmetric and if the set $A.A$ (the set of all $xy$, where $x$, $y$ lie in $A$) is covered by $K$ translates of $A$. I will illustrate this notion by example, and will go on to discuss progress on the "rough classification" of approximate groups in various settings: abelian groups, nilpotent groups and matrix groups of fixed dimension. Joint work with E. Breuillard.
Hamilton cycles in random geometric graphs
Abstract
The Gilbert model of a random geometric graph is the following: place points at random in a (two-dimensional) square box and join two if they are within distance $r$ of each other. For any standard graph property (e.g. connectedness) we can ask whether the graph is likely to have this property. If the property is monotone we can view the model as a process where we place our points and then increase $r$ until the property appears. In this talk we consider the property that the graph has a Hamilton cycle. It is obvious that a necessary condition for the existence of a Hamilton cycle is that the graph be 2-connected. We prove that, for asymptotically almost all collections of points, this is a sufficient condition: that is, the smallest $r$ for which the graph has a Hamilton cycle is exactly the smallest $r$ for which the graph is 2-connected. This work is joint work with Jozsef Balogh and B\'ela Bollob\'as
Multicolour Ramsey numbers for cycles
Abstract
In this talk, we shall discuss recent developments in the case when the graphs $L_1,\dots,L_k$ are all cycles and $k\ge2$.
Cycles in directed graphs
Abstract
There are many theorems concerning cycles in graphs for which it is natural to seek analogous results for directed graphs. I will survey
recent progress on certain questions of this type. New results include
(i) a solution to a question of Thomassen on an analogue of Dirac’s theorem
for oriented graphs,
(ii) a theorem on packing cyclic triangles in tournaments that “almost” answers a question of Cuckler and Yuster, and
(iii) a bound for the smallest feedback arc set in a digraph with no short directed cycles, which is optimal up to a constant factor and extends a result of Chudnovsky, Seymour and Sullivan.
These are joint work respectively with (i) Kuhn and Osthus, (ii) Sudakov, and (iii) Fox and Sudakov.
Concentration and mixing for Markov chains
Abstract
Synchronization and homomorphisms
Abstract
A graph homomorphism is a mapping of vertices which takes edges to edges. The endomorphisms of a graph (homomorphisms to itself) form a submonoid of he full transformation monoid on the vertex set. In the other direction, there is a construction of a graph from a transformation monoid, which will be described in the talk. Composing these maps gives closure operators on graphs and on monoids which have some interesting properties. There are also connections with finite automata and permutation groups.
The edge correlation of random forests
Abstract
The conjecture was made by Pemantle that a forest chosen uniformly at random from all forests in any finite graph G has the edge-negative association property. We use enumerative methods to show that this conjecture is true for n large enough when G is a complete graph on n vertices and derive related results for random trees.
The scaling limit of critical random graphs
Abstract
Consider the Erdos-Renyi random graph $G(n,p)$ inside the critical window, so that $p = n^{-1} + \lambda n^{-4/3}$ for some real \lambda. In
this regime, the largest components are of size $n^{2/3}$ and have finite surpluses (where the surplus of a component is the number of edges more than a tree that it has). Using a bijective correspondence between graphs and certain "marked random walks", we are able to give a (surprisingly simple) metric space description of the scaling limit of the ordered sequence of components, where edges in the original graph are re-scaled by $n^{-1/3}$. A limit component, given its size and surplus, is obtained by taking a continuum random tree (which is not a Brownian continuum random tree, but one whose distribution has been exponentially tilted) and making certain natural vertex identifications, which correspond to the surplus edges. This gives a metric space in which distances are calculated using paths in the original tree and the "shortcuts" induced by the vertex identifications. The limit of the whole critical random graph is then a collection of such
metric spaces. The convergence holds in a sufficiently strong sense (an appropriate version of the Gromov-Hausdorff distance) that we are able to deduce the convergence in distribution of the diameter of $G(n,p)$, re-scaled by $n^{-1/3}$, to a non-degenerate random variable, for $p$ in the critical window.
This is joint work (in progress!) with Louigi Addario-Berry (Universite de Montreal) and Nicolas Broutin (INRIA Rocquencourt).
The t-dependence and t-improper chromatic numbers of random graphs
Abstract
We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.
This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.
Random partial orders and random linear extensions
Abstract
Random partial orders and random linear extensions
Several interesting models of random partial orders can be described via a
process that builds the partial order one step at a time, at each point
adding a new maximal element. This process therefore generates a linear
extension of the partial order in tandem with the partial order itself. A
natural condition to demand of such processes is that, if we condition on
the occurrence of some finite partial order after a given number of steps,
then each linear extension of that partial order is equally likely. This
condition is called "order-invariance".
The class of order-invariant processes includes processes generating a
random infinite partial order, as well as those that amount to taking a
random linear extension of a fixed infinite poset.
Our goal is to study order-invariant processes in general. In this talk, I
shall explain some of the problems that need to be resolved, and discuss
some of the combinatorial problems that arise.
(joint work with Malwina Luczak)
Vertex Turan problems in the hypercube
Abstract
Graphs on surfaces and virtual knots
Abstract
surfaces the natural duality can be generalized to a duality with respect to a subset of edges. The generalized dual graph might be embedded into a different surface. I will explain a relation between the Bollobas-Riordan polynomials of dual graphs. This relation unifies various Thistlethwaite type theorems.
Strategy Improvement for Parity Games: A combinatorial perspective
Abstract
In this talk I will discuss how the problem of finding a winner in a parity game can be reduced to the problem of locally finding a global sink on an acyclic unique sink oriented hypercube. As a consequence, we can improve (albeit only marginally) the bounds of the strategy improvement algorithm.
This talk is similar to one I presented at the InfoSys seminar in the Computing Laboratory in October.
Testing expansion in bounded degree graphs really fast
Abstract
In the first part of the talk we will introduce the notion of property testing and briefly discuss some results in testing graph properties in the framework of property testing.
Then, we will discuss a recent result about testing expansion in bounded degree graphs. We focus on the notion of vertex-expansion: \newline an $a$-expander is a graph $G = (V,E)$ in which every subset $U$ of $V$ of at most $|V|/2$ vertices has a neighborhood of size at least $a|U|$. Our main result is that one can distinguish good expanders from graphs that are far from being weak expanders in time approximately $O(n^{1/2})$.
We design a property testing algorithm that accepts every $a$-expander with probability at least 2/3 and rejects every graph that is $\epsilon$-far from an $a^*$-expander with probability at least 2/3, where $a^* = O(a^2/(d^2 log(n/\epsilon)))$, $d$ is the maximum degree of the graphs, and a graph is called $\epsilon$-far from an $a^*$-expander if one has to modify (add or delete) at least $\epsilon d n$ of its edges to obtain an $a^*$-expander. The algorithm assumes the bounded-degree graphs model with adjacency list graph representation and its running time is $O(d^2 n^{1/2} log(n/\epsilon)/(a^2 \epsilon^3))$.
This is a joint work with Christian Sohler.