Forthcoming events in this series


Thu, 22 Jun 2006

14:00 - 15:00
Comlab

Global performance of the Newton method

Prof Yurii Nesterov
(Universite catholique de louvain)
Abstract

In this talk we present different strategies for regularization of the pure Newton method

(minimization problems)and of the Gauss-Newton method (systems of nonlinear equations).

For these schemes, we prove general convergence results. We establish also the global and

local worst-case complexity bounds. It is shown that the corresponding search directions can

be computed by a standard linear algebra technique.

Mon, 19 Jun 2006

14:00 - 15:00
Comlab

Petrov-Galerkin Enriched Methods for Porous Media Applications

Prof Leo Franca
(University of Colorado)
Abstract

We present a novel enhanced finite element method for the Darcy problem starting from the non stable

continuous $P_1 / P_0$ finite element spaces enriched with multiscale functions. The method is a departure

from the standard mixed method framework used in these applications. The methods are derived in a Petrov-Galerkin

framework where both velocity and pressure trial spaces are enriched with functions based on residuals of strong

equations in each element and edge partition. The strategy leads to enhanced velocity space with an element of

the lowest order Raviart-Thomas space and to a stable weak formulation preserving local mass conservation.

Numerical tests validate the method.

Jointly with Gabriel R Barrenechea, Universidad de Concepcion &

Frederic G C Valentin, LNCC

Thu, 15 Jun 2006

14:00 - 15:00
Comlab

Numerical simulation of flows with strong density imhomogeneities

Dr Jocelyn Etienne
(University of Cambridge)
Abstract

Strong horizontal gradients of density are responsible for the occurence of a large number of (often catastrophic) flows, such as katabatic winds, dust storms, pyroclastic flows and powder-snow avalanches. For a large number of applications, the overall density contrast in the flow remains small and simulations are carried in the Boussinesq limit, where density variations only appear in the body-force term. However, pyroclastic flows and powder-snow avalanches involve much larger density contrasts, which implies that the inhomogeneous Navier-Stokes equations need to be solved, along with a closure equation describing the mass diffusion. We propose a Lagrange-Galerkin numerical scheme to solve this system, and prove optimal error bounds subject to constraints on the order of the discretization and the time-stepping. Simulations of physical relevance are then shown.

Thu, 08 Jun 2006

14:00 - 15:00
Comlab

Modelling cerebrospinal fluid flow through the brain and hydrocephalus

Dr Ian Sobey
(University of Oxford)
Abstract

An integral part of the brain is a fluid flow system that is separate from brain tissue and the cerebral blood flow system: cerebrospinal fluid (CSF) is produced near the centre of the brain, flows out and around the brain, including around the spinal cord and is absorbed primarily in a region between the brain tissue and the skull. Hydrocephalus covers a broad range of anomalous flow and pressure situations: the normal flow path can become blocked, other problems can occur which result in abnormal tissue deformation or pressure changes. This talk will describe work that treats brain tissue as a poroelastic matrix through which the CSF can move when normal flow paths are blocked, producing tissue deformation and pressure changes. We have a number of models, the simplest treating the brain and CSF flow as having spherial symmetry ranging to more complex, fully three-dimensional computations. As well as considering acute hydrocephalus, we touch on normal pressure hydrocephalus, idiopathic intracranial hypertension and simulation of an infusion test. The numerical methods used are a combination of finite difference and finite element techniques applied to an interesting set of hydro-elastic equations.

Thu, 01 Jun 2006

14:00 - 15:00
Comlab

Recent activities in automatic differentiation and beyond

Prof Christian Bischof
(RWTH)
Abstract

In this talk, we report on recent activities in the development of automatic differentiation tools for Matlab and CapeML, a common intermediate language for process control, and highlight some recent AD applications. Lastly, we show the potential for parallelisation created by AD and comment on the impact on scientific computing due to emerging multicore chips which are providing substantial thread-based parallelism in a "pizza box" form factor.

Thu, 25 May 2006

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Algebraic updates of preconditioners for solving similar algebraic linear systems

Dr Mirek Tuma
(Institute of Computer Sciences)
Abstract

We consider the solution of sequences of linear systems by preconditioned iterative methods. Such systems arise, for example, in applications such as CFD and structural mechanics. In some cases it is important to avoid the recomputation of preconditioners for subsequent systems. We propose an algebraic strategy that replaces new preconditioners by old preconditioners with simple updates. Efficiency of the new strategy, which generalizes the approach of Benzi and Bertaccini, is demonstrated using numerical experiments.

This talk presents results of joint work with Jurjen Duintjer Tebbens.

Thu, 11 May 2006

14:00 - 15:00
Comlab

Diagonal scaling of discrete differential forms

Prof Mark Ainsworth
(University of Strathclyde)
Abstract

The use of discrete differential forms in the construction of finite element discretisations of the Sobolev spaces H^s, H(div) and H(curl) is now routinely applied by numerical analysts and engineers alike. However, little attention has been paid to the conditioning of the resulting stiffness matrices, particularly in the case of the non-uniform meshes that arise when adaptive refinement algorithms are used. We study this issue and show that the matrices are generally rather poorly conditioned. Typically, diagonal scaling is applied (often unwittingly) as a preconditioner. However, whereas diagonal scaling removes the effect of the mesh non-uniformity in the case of Sobolev spaces H^s, we show this is not so in the case of the spaces H(curl) and H(div). We trace the reason behind this difference, and give a simple remedy for curing the problem.

Thu, 04 May 2006

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A novel, parallel PDE solver for unstructured grids

Dulceneia Becker
(Cranfield University)
Abstract

We propose a new parallel domain decomposition algorithm to solve symmetric linear systems of equations derived from the discretization of PDEs on general unstructured grids of triangles or tetrahedra. The algorithm is based on a single-level Schwarz alternating procedure and a modified conjugate gradient solver. A single layer of overlap has been adopted in order to simplify the data-structure and minimize the overhead. This approach makes the global convergence rate vary slightly with the number of domains and the algorithm becomes highly scalable. The algorithm has been implemented in Fortran 90 using MPI and hence portable to different architectures. Numerical experiments have been carried out on a SunFire 15K parallel computer and have been shown superlinear performance in some cases.

Thu, 27 Apr 2006

14:00 - 15:00
Comlab

How to approach non-normal matrix eigenvalue problems

Prof Beresford Parlett
(UC Berkeley)
Abstract

Non-normal matrices can be tiresome; some eigenvalues may be phlegmatic while others may be volatile. Computable error bounds are rarely used in such computations. We offer a way to proceed. Let (e,q,p') be an approximate eigentriple for non-normal B. Form column and row residuals r = Bq - qe and s' = p'B - ep'. We establish the relation between the smallest perturbation E, in both spectral and Frobenius norms, that makes the approximations correct and the norms of r and s'. Our results extend to the case when q and p are tall thin matrices and e is a small square matrix. Now regard B as a perturbation of B-E to obtain a (first order) bound on the error in e as a product of ||E|| and the condition number of e, namely (||q|| ||p'||)/|p'q|.

Thu, 09 Mar 2006

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Adaptive preconditioners for Newton-Krylov methods

Dr Daniel Loghin
(University of Birmingham)
Abstract

The use of preconditioned Newton-Krylov methods is in many applications mandatory for computing efficiently the solution of large nonlinear systems of equations. However, the available preconditioners are often sub-optimal, due to the changing nature of the linearized operator. This the case, for instance, for quasi-Newton methods where the Jacobian (and its preconditioner) are kept fixed at each non-linear iteration, with the rate of convergence usually degraded from quadratic to linear. Updated Jacobians, on the other hand require updated preconditioners, which may not be readily available. In this work we introduce an adaptive preconditioning technique based on the Krylov subspace information generated at previous steps in the nonlinear iteration. In particular, we use to advantage an adaptive technique suggested for restarted GMRES to enhance existing preconditioners with information about (almost) invariant subspaces constructed by GMRES at previous stages in the nonlinear iteration. We provide guidelines on the choice of invariant-subspace basis used in the construction of our preconditioner and demonstrate the improved performance on various test problems. As a useful general application we consider the case of augmented systems preconditioned by block triangular matrices based on the structure of the system matrix. We show that a sufficiently good solution involving the primal space operator allows for an efficient application of our adaptive technique restricted to the space of dual variables.

Thu, 02 Mar 2006

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Algebraic multigrid using inverse-based coarsening

Dr Matthias Bollhoefer
(TU Braunschweig)
Abstract

In this talk we will review classical multigrid methods and give an overview on algebraic multigrid methods, in particular the "classical" approach to AMG by Ruge and Stueben.

After that we will introduce a new class of multilevel methods. These new AMGs on one hand and exploit information based on filtering vectors and on the other hand, information about the inverse matrix is used to drive the coarsening process.

This new kind of AMG will be discussed and compared with "classical" AMG from a theoretical point of view as well as by showing some numerical examples.

Thu, 23 Feb 2006

14:00 - 15:00
Comlab

On the numerical analysis of an augmented mixed finite element method for linear elasticity

Prof Gabriel Gatica
(Univ. de Concepcion)
Abstract

We present a new stabilized mixed finite element method for the linear elasticity problem. The approach is based on the introduction of Galerkin least-squares terms arising from the constitutive and equilibrium equations, and from the relation defining the rotation in terms of the displacement.

We show that the resulting augmented variational formulation and the associated Galerkin scheme are well posed, and that the latter becomes locking-free and asymptotically locking-free for Dirichlet and mixed boundary conditions, respectively. In particular, the discrete scheme allows the utilization of Raviart-Thomas spaces of lowest order for the stress tensor, piecewise linear elements for the displacement, and piecewise constants for the rotation.

In the case of mixed boundary conditions, the essential one (Neumann) is imposed weakly, which yields the introduction of the trace of the displacement as a suitable Lagrange multiplier. This trace is then approximated by piecewise linear elements on an independent partition of the Neumann boundary whose mesh size needs to satisfy a compatibility condition with the mesh size associated to the triangulation of the domain. A reliable and efficient a-posteriori error estimate is also described. Finally, several numerical results illustrating the performance of the augmented scheme are reported.

Thu, 16 Feb 2006

14:00 - 15:00
Comlab

The finite element method for Cahn-Hilliard-Navier-Stokes equations

Dr David Kay
(University of Sussex)
Abstract

The Cahn-Hilliard equations provides a model of phase transitions when two or more immiscible fluids interact. When coupled with the Navier-Stokes equations we obtain a model fro the dynamics of multiphase flow. This model takes into account the viscosity and densities of the various fluids present.

A finite element discretisation of the variable density Cahn-Hilliard-Navier-Stokes equations is presented. An analysis of the discretisation and a reliable efficient numerical solution method are presented.

Thu, 09 Feb 2006

14:00 - 15:00
Comlab

Applications of radial basis functions

Prof Jeremy Levesley
(University of Leicester)
Abstract

I will describe some application areas for radial basis function, and discuss how the computational problems can be overcome by the use of preconditioning methods and fast evaluation techniques.

Thu, 02 Feb 2006

14:00 - 15:00
Comlab

tba

Prof Mark Ainsworth
(University of Strathclyde)
Abstract

This Seminar has been cancelled and will now take place in Trinity Term, Week 3, 11 MAY.

Thu, 26 Jan 2006

14:00 - 15:00
Comlab

Inverse problems and stochastic differential equations

Prof Chris Farmer
(Schlumberger)
Abstract

Using the one-dimensional diffusion equation as an example, this seminar looks at ways of constructing approximations to the solution and coefficient functions of differential equations when the coefficients are not fully defined. There may, however, be some information about the solution. The input data, usually given as values of a small number of functionals of the coefficients and the solution, is insufficient for specifying a well-posed problem, and so various extra assumptions are needed. It is argued that looking at these inverse problems as problems in Bayesian statistics is a unifying approach. We show how the standard methods of Tikhonov Regularisation are related to special forms of random field. The numerical approximation of stochastic partial differential Langevin equations to sample generation will be discussed.

Thu, 19 Jan 2006

14:00 - 15:00
Comlab

High frequency scattering by convex polygons

Dr Stephen Langdon
(University of Reading)
Abstract

Standard finite element or boundary element methods for high frequency scattering problems, with piecewise polynomial approximation spaces, suffer from the limitation that the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency. Here we present a new boundary element method for which, by including in the approximation space the products of plane wave basis functions with piecewise polynomials supported on a graded mesh, we can demonstrate a computational cost that grows only logarithmically with respect to the frequency.

Tue, 06 Dec 2005

14:00 - 15:00
Comlab

Cubature formulas, discrepancy and non linear approximation

Prof Vladimir Temlyakov
(University of South Carolina)
Abstract

The main goal of this talk is to demonstrate connections between the following three big areas of research: the theory of cubature formulas (numerical integration), the discrepancy theory, and nonlinear approximation. First, I will discuss a relation between results on cubature formulas and on discrepancy. In particular, I'll show how standard in the theory of cubature formulas settings can be translated into the discrepancy problem and into a natural generalization of the discrepancy problem. This leads to a concept of the r-discrepancy. Second, I'll present results on a relation between construction of an optimal cubature formula with m knots for a given function class and best nonlinear m-term approximation of a special function determined by the function class. The nonlinear m-term approximation is taken with regard to a redundant dictionary also determined by the function class. Third, I'll give some known results on the lower and the upper estimates of errors of optimal cubature formulas for the class of functions with bounded mixed derivative. One of the important messages (well known in approximation theory) of this talk is that the theory of discrepancy is closely connected with the theory of cubature formulas for the classes of functions with bounded mixed derivative.

Thu, 01 Dec 2005

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Dynamic-load balancing issues and preliminary out-of-core experiments in a parallel sparse solver

Dr Jean-Yves L'Excellent
(ENS Lyon)
Abstract

Parallel sparse direct solvers are an interesting alternative to iterative methods for some classes of large sparse systems of linear equations. In the context of a parallel sparse multifrontal solver (MUMPS), we describe a new dynamic scheduling strategy aiming at balancing both the workload and the memory usage. More precisely, this hybrid approach balances the workload under memory constraints. We show that the peak of memory can be significantly reduced, while we have also improved the performance of the solver.

Then, we present preliminary work concerning a parallel out-of-core extension of the solver MUMPS, enabling to solve increasingly large simulation problems.

This is joint work with P.Amestoy, A.Guermouche, S.Pralet and E.Agullo.

Thu, 24 Nov 2005

14:00 - 15:00
Comlab

Instability & transition of steady and pulsatile flow in stenotic/constricted pipes

Dr Spencer Sherwin
(Imperial College London)
Abstract

Through the advent of enhanced medical imaging computational modelling can now be applied to anatomically correct arterial geometries. However many flow feautures under physiological and pathological flow paraemeters, even in idealised problems, are relatively poorly understood. A commonly studied idealisation of an arterial blockage or stenosis, potentially generated by atherosclerosis, is a sinusoidally varying constricted tube. Although most physiological flow conditions are typically laminar, in this configuration turbulent flow states can arise due to the local increase in sectional Reynolds number. To examine the onset of turbulence in this geometry, under a simple non-reversing pulsatile flows, we have applied Floquet stability analysis and direct
numerical simulation.
As illustrated in the above figure, a period-doubling absolute instability mode associated with alternating tilting of the vortex rings that are ejected out of the stenosis/constriction during each pulse. This primary instability occurs for relatively large reduced velocities associated with long pulse periods (or low Womersley numbers). For lower reduced velocities the primary instability typically manifests itself as azimuthal waves (Widnall instability modes) of low wavenumber that grow on each vortex ring. We have also observed the shear layer of the steady axisymmetric flow is convectively unstable at still shorter temporal periods.
In this presentation we shall outline the challenges of modelling vascular flow problems with a particular focus on idealised stenotic flow. After briefly outlining the numerical analysis methods we shall discuss the flow investigations outlined above and their relation to more classical vortex instabilities.

Thu, 17 Nov 2005

14:00 - 15:00
Comlab

Fast image inpainting (based on coherent transport)

Prof Folkmar Bornemann
(Technical University of Munich)
Abstract

Image Inpainting turns the art of image restoration, retouching, and disocclusion into a computer-automated trade. Mathematically, it may be viewed as an interpolation problem in BV, SBV, or other fancy function spaces thought suitable for digital images. It has recently drawn the attention of the numerical PDE community, which has led to some impressive results. However, stability restrictions of the suggested explicit schemes so far yield computing times that are next to prohibitive in the realm of interactive digital image processing. We address this issue by constructing an appropriatecontinuous energy functional that combines the possibility of a fast discrete minimization with high perceptible quality of the resulting inpainted images.

The talk will survey the background of the inpainting problem and prominent PDE-based methods before entering the discussion of the suggested new energy functional. Many images will be shown along the way, in parts with online demonstrations.

This is joint work with my student Thomas März.

Thu, 10 Nov 2005

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Sensitivity issues for least-squares problems

Dr Serge Gratton
(CERFACS)
Abstract

Alan Turing introduced the sensitivity of the solution of a numerical problem to changes in its data as a way to measure the difficulty of solving the problem accurately. Condition numbers are now considered fundamental to sensitivity analysis. They have been used to measure the mathematical difficulty of many linear algebra problems, including linear systems, linear least-squares, and eigenvalue problems. By definition, unless exact arithmetic is used, it is expected to be difficultto accurately solve an ill-conditioned problem.

In this talk we focus on least-squares problems. After a historical overview of condition number for least-squares, we introduce two related condition numbers. The first is the partial condition number, which measures the sensitivity of a linear combination of the components of the solution. The second is related the truncated SVD solution of the problem, which is often used when the matrix is nearly rank deficient.

Throughout the talk we are interested in three types of results :closed formulas for condition numbers, sharp bounds and statistical estimates.

Thu, 03 Nov 2005

14:00 - 15:00
Comlab

Solving large sparse symmetric linear systems out of core

Dr John Reid
(Rutherford Appleton Laboratory)
Abstract

Direct methods for solving large sparse linear systems of equations are popular because of their generality and robustness. As the requirements of computational scientists for more accurate models increases, so inevitably do the sizes of the systems that must be solved and the amount of memory needed by direct solvers.

For many users, the option of using a computer with a sufficiently large memory is either not available or is too expensive. Using a preconditioned iterative solver may be possible but for the "tough" systems that arise from many practical applications, the difficulties involved in finding and computing a good preconditioner can make iterative methods infeasible. An alternative is to use a direct solver that is able to hold its data structures on disk, that is, an out-of-core solver.

In this talk, we will explain the multifrontal algorithm and discuss the design and development of a new HSL sparse symmetric out-of-core solver that uses it. Both the system matrix A and its factors are stored externally. For the indefinite case, numerical pivoting using 1x1 and 2x2 pivots is incorporated. To minimise storage for the system data, a reverse communication interface is used. Input of A is either by rows or by elements.

An important feature of the package is that all input and output to disk is performed through a set of Fortran subroutines that manage a virtual memory system so that actual i/o occurs only when really necessary. Also important is to design in-core data structures that avoid expensive searches. All these aspects will be discussed.

At the time of writing, we are tuning the code for the positive-definite case and have performance figures for real problems. By the time of the seminar, we hope to have developed the indefinite case, too.