Forthcoming events in this series


Mon, 29 Feb 2016
14:15
L4

The topology of area-minimizing surfaces in manifolds of non-negative curvature

Otis Chodosh
(Cambridge)
Abstract

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

Mon, 22 Feb 2016
14:15
L4

The Gromoll filtration, Toda brackets and positive scalar curvature

OAC-manifolds meeting: Diarmuid Crowley
(Aberdeen)
Abstract
An exotic (n+1)-sphere has disc of origin D^k if k is the smallest integer such that some clutching diffeomorphism of the n-disc which builds the exotic sphere can be written as an (n-k)-parameter family of diffeomorphisms of the k-disc.
 
In this talk I will present a new method for constructing exotic spheres with small disc of origin via Toda brackets.  
 
This method gives exotic spheres in all dimensions 8j+1 and 8j+2 with disc of origin 6 and with Dirac operators of non-zero index (such spheres are often called "Hitchin spheres").
 
I will also briefly discuss implications of our results for the space of positive scalar curvature metrics on spin manifolds of dimension 6 and higher, and in particular the relationship of this project to the work of Botvinnik, Ebert and Randal-Williams.
 
This is part of joint work with Thomas Schick and Wolfgang Steimle.
Mon, 15 Feb 2016
14:15
L4

Generalized Kähler structures from a holomorphic Poisson viewpoint

Marco Gualtieri
(Toronto)
Abstract

After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.

Mon, 01 Feb 2016
02:15
L4

Torelli theorems and integrable systems for parabolic Higgs bundles

Marina Logares
(Oxford)
Abstract

In the same way that the classical Torelli theorem determines a curve from its polarized Jacobian we show that moduli spaces of parabolic bundles and parabolic Higgs bundles over a compact Riemann surface X  also determine X. We make use of a theorem of Hurtubise on the geometry of algebraic completely integrable systems in the course of the proof. This is a joint work with I. Biswas and T. Gómez 

Mon, 30 Nov 2015
14:15
L4

The structure of instability in moduli theory

Daniel Halpern-Leistner
(Columbia)
Abstract

I will discuss theta-stability, a framework for analyzing moduli problems in algebraic geometry by finding a special kind of stratification called a theta-stratification, a notion which generalizes the Kempf-Ness stratification in geometric invariant theory and the Harder-Narasimhan-Shatz stratification of the moduli of vector bundles on a Riemann surface.

Mon, 16 Nov 2015
14:15
L6

Painlev'e equations, cluster algebras and quantisation

Marta Mazzocco
(Loughborough)
Abstract

The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.

In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.

After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.  

Mon, 02 Nov 2015
14:15
L4

On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Aazami
(IPMU)
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+).  We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases.  For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91).  Similar obstructions for the other cases will also be discussed.  Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism.  Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures. 
Mon, 26 Oct 2015
14:15
L4

The complex geometry of Teichmüller spaces and bounded symmetric domains.

Stergios Antonakoudis
(Cambridge)
Abstract

From a complex analytic perspective, both Teichmüller spaces and
symmetric spaces can be realised as contractible bounded domains, that
have several features in common but also exhibit many differences. In
this talk we will study isometric maps between these two important
classes of bounded domains equipped with their intrinsic Kobayashi metric.

Mon, 15 Jun 2015
14:15
L4

Hermitian metrics with constant Chern scalar curvature

Cristiano Spotti
(Cambridge)
Abstract

I will discuss some properties of Hermitian metrics on compact complex manifolds, having constant Chern scalar curvature, focusing on the existence problem in fixed Hermitian conformal classes (the "Chern-Yamabe problem"). This is joint work with Daniele Angella and Simone Calamai.

Tue, 09 Jun 2015
15:15
L4

(COW seminar) The derived category of moduli spaces of vector bundles on curves

M S Narasimhan
(TIFR Bangalore)
Abstract

Let X be a smooth projective curve (of genus greater than or equal to 2) over C and M the moduli space of vector bundles over X, of rank 2 and with fixed determinant of degree 1.Then the Fourier-Mukai functor from the bounded derived category of coherent sheaves on X to that of M, given by the normalised Poincare bundle, is fully faithful, except (possibly) for hyperelliptic curves of genus 3,4,and 5

 This result is proved by establishing precise vanishing theorems for a family of vector bundles on the moduli space M.

 Results on the deformation  and inversion of Picard bundles (already known) follow from the full faithfulness of the F-M functor

Mon, 08 Jun 2015
14:15
L4

Counting non-simple closed curves on surfaces

Jenya Sapir
(Illinois)
Abstract

We show how to get coarse bounds on the number of (non-simple) closed geodesics on a surface, given upper bounds on both length and self-intersection number. Recent work by Mirzakhani and by Rivin has produced asymptotics for the growth of the number of simple closed curves and curves with one self-intersection (respectively) with respect to length. However, no asymptotics, or even bounds, were previously known for other bounds on self-intersection number. Time permitting, we will discuss some applications of this result

Mon, 11 May 2015
14:15
L4

New G2 holonomy cones and exotic nearly Kähler structures on compact 6-manifolds

Mark Haskins
(Imperial College)
Abstract

A long-standing problem in almost complex geometry has been the question of existence of (complete) inhomogeneous nearly Kahler 6-manifolds. One of the main motivations for this question comes from $G_2$ geometry: the Riemannian cone over a nearly Kahler 6-manifold is a singular space with holonomy $G_2$.

Viewing Euclidean 7-space as the cone over the round 6-sphere, the induced nearly Kahler structure is the standard $G_2$-invariant almost complex structure on the 6-sphere induced by octonionic multiplication. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kahler metrics on the 6-sphere and also on the product of two 3-spheres. This is joint work with Lorenzo Foscolo, Stony Brook.

Mon, 27 Apr 2015
14:15
L4

Non-perturbative symplectic manifolds and non-commutative algebras

Philip Boalch
(Orsay)
Abstract

From a geometric viewpoint the irregular Riemann-Hilbert correspondence can be viewed as a machine that takes as input a simple
`additive' symplectic/Poisson manifold and it outputs a more complicated `multiplicative' symplectic/Poisson manifold. In the
simplest nontrivial example it converts the linear Poisson manifold Lie(G)^* into the dual Poisson Lie group G^* (which is the Poisson
manifold underlying the Drinfeld-Jimbo quantum group). This talk will firstly describe some more recent (and more complicated) examples of
such `nonperturbative symplectic/Poisson manifolds', i.e. symplectic spaces of Stokes/monodromy data or `wild character varieties'. Then
the natural generalisations (`fission algebras') of the deformed multiplicative preprojective algebras that occur will be discussed, some
of which are known to be related to Cherednik algebras.

Mon, 09 Mar 2015
14:15
L3

Groupoids, meromorphic connections and divergent series

Brent Pym
(Oxford)
Abstract

A meromorphic connection on a complex curve can be interpreted as a representation of a simple Lie algebroid.  By integrating this Lie algebroid to a Lie groupoid, one obtains a complex surface on which the parallel transport of the connection is globally well-defined and holomorphic, despite the apparent singularities of the corresponding differential equations.  I will describe these groupoids and explain how they can be used to illuminate various aspects of the classical theory of singular ODEs, such as the resummation of divergent series solutions.  (This talk is based on joint work with Marco Gualtieri and Songhao Li.)

Mon, 23 Feb 2015
14:15
L5

Folded hyperkähler manifolds

Nigel Hitchin
(Oxford)
Abstract

The lecture will introduce the notion of a folded 4-dimensional hyperkähler manifold, give examples and prove a local existence theorem from boundary data using twistor methods, following an idea of Biquard.  

Mon, 09 Feb 2015
14:15
L5

Automorphism and isometry groups of Higgs bundle moduli spaces

David Baraglia
(Adelaide)
Abstract

The moduli space of Higgs bundles on a hyperbolic Riemann surface is a complex analytic variety which has a hyperkahler metric on its smooth locus. As such it has several associated symmetry groups including the group of complex analytic automorphisms and the group of isometries. I will discuss the classification of these and some other related groups.

Mon, 02 Feb 2015
14:15
L5

Geometric structures, Gromov norm and Kodaira dimensions

Weiyi Zhang
(Warwick)
Abstract

Kodaira dimension provides a very successful classification scheme for complex manifolds. The notion was extended to symplectic 4-manifolds. In this talk, we will define the Kodaira dimension for 3-manifolds through Thurston’s eight geometries. This is compatible with other Kodaira dimensions in the sense of “additivity”. This idea could be extended to dimension 4. Finally, we will see how it is sitting in a potential classification of 4-manifolds by exploring its relations with various Kodaira dimensions and other invariants like Gromov norm.

Mon, 26 Jan 2015
14:15
L5

Ends of the moduli space of Higgs bundles

Frederik Witt
(Münster)
Abstract

Hitchin's existence theorem asserts that a stable Higgs bundle of rank two carries a unitary connection satisfying Hitchin's self-duality equation. In this talk we discuss a new proof, via gluing methods, for
elements in the ends of the Higgs bundle moduli space and identify a dense open subset of the boundary of the compactification of this moduli space.
 

Mon, 01 Dec 2014
14:15
L5

An Abundance of K3 Fibrations and the Structure of the Landscape

Philip Candelas
(Oxford)
Abstract

Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic K3 fibrations whose mirror images are also elliptic K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.

Mon, 17 Nov 2014
14:15
L5

The Horn inequalities and tropical analysis

Andras Szenes
(Geneva)
Abstract

 I will report on recent work on a tropical/symplectic approach to the Horn inequalities. These describe the possible spectra of Hermitian matrices which may be obtained as the sum of two Hermitian matrices with fixed spectra. This is joint work with Anton Alekseev and Maria Podkopaeva.

Mon, 10 Nov 2014
14:15
L5

Tropical moment maps for toric log symplectic manifolds

Marco Gualtieri
(Toronto)
Abstract

I will describe a generalization of toric symplectic geometry to a new class of Poisson manifolds which are
symplectic away from a collection of hypersurfaces forming a normal crossing configuration.  Using a "tropical
moment map",  I will describe the classification of such manifolds in terms of decorated log affine polytopes,
in analogy with the Delzant classification of toric symplectic manifolds. 

Mon, 20 Oct 2014

14:15 - 16:30
L5

Mirror symmetry for varieties of general type

Mark Gross
(Cambridge)
Abstract
I will discuss joint work with Ludmil Katzarkov and Helge Ruddat. Given a hypersurface X in a toric variety of positive Kodaira dimension, (with a certain number of hypotheses) we construct an object which we believe can be viewed as the mirror of X. In particular, it exhibits the usual interchange of Hodge numbers expected in mirror symmetry. This may seem puzzling at first. For example, a curve of genus g would be expected to have a mirror such that h^{0,0}=g, which is not possible for a variety. However, our mirror is a singular scheme Y along with a perverse sheaf F, whose cohomology carries a mixed Hodge structure. It then makes sense to compute Hodge numbers for F, and we find the traditional exchange of Hodge numbers.
Mon, 19 May 2014

14:15 - 15:30
L5

Variation of the moduli space of Gieseker stable sheaves via Quiver GIT

Julius Ross (Cambridge)
Abstract

 I will discuss joint work with Daniel Greb and Matei Toma in which we introduce a notion of Gieseker-stability that depends on several polarisations.  We use this to study the change in the moduli space of Giesker semistable sheaves on manifolds giving new results in dimensions at least three, and to study the notion of Gieseker-semistability for sheaves taken with respect to an irrational Kahler class.

Mon, 05 May 2014

14:15 - 15:15
L5

Quantum curves for Higgs bundles and quantum invariants

Motohico Mulase (UC Davis)
Abstract

I will present a formula that relates a Higgs bundle on an algebraic curve and Gromov-Witten invariants. I will start with the simplest example, which is a rank 2 bundle over the projective line with a meromorphic Higgs field. The corresponding quantum curve is the Airy differential equation, and the Gromov-Witten invariants are the intersection numbers on the moduli space of pointed stable curves. The formula connecting them is exactly the path that Airy took, i.e., from wave mechanics to geometric optics, or what we call the WKB method, after the birth of quantum mechanics. In general, we start with a Higgs bundle. Then we apply a generalization of the topological recursion, originally found by physicists Eynard and Orantin in matrix models, to this context. In this way we construct a quantization of the spectral curve of the Higgs bundle. 

Mon, 28 Apr 2014

14:15 - 15:30
L5

Homogeneous Monge-Ampere equations and canonical tubular neighbourhoods in K\"ahler geometry

David Witt Nystrom (Cambridge)
Abstract

By solving the Homogeneous Monge-Ampere equation on the deformation to the normal cone of a complex submanifold of a Kahler manifold, we get a canonical tubular neighbourhood adapted to both the holomorphic and the symplectic structure. If time permits I will describe an application, namely an optimal regularity result for certain naturally defined plurisubharmonic envelopes.

Mon, 17 Mar 2014
14:15
C3

CANCELLED

Milena Pabiniak
(Lisbon)
Mon, 03 Mar 2014
14:15
L5

The geometry of constant mean curvature disks embedded in R^3.

Giuseppe Tinaglia
(KCL)
Abstract

In this talk I will discuss results on the geometry of constant mean curvature (H\neq 0) disks embedded in R^3. Among other

things I will prove radius and curvature estimates for such disks. It then follows from the radius estimate that the only complete, simply connected surface embedded in R^3 with constant mean curvature is the round sphere. This is joint work with Bill Meeks.

Mon, 17 Feb 2014
14:15
L5

Higher dimensional monopoles

Goncalo Oliveira
(Imperial)
Abstract

The Monopole (Bogomolnyi) equations are Geometric PDEs in 3 dimensions. In this talk I shall introduce a generalization of the monopole equations to both Calabi Yau and G2 manifolds. I will motivate the possible relations of conjectural enumerative theories arising from "counting" monopoles and calibrated cycles of codimension 3. Then, I plan to state the existence of solutions and sketch how these examples are constructed.