Forthcoming events in this series
16:00
Symplectic cohomology and its (non)vanishing
Abstract
Symplectic cohomology is a Floer cohomology invariant of compact symplectic manifolds
with contact type boundary, or of open symplectic manifolds with a certain geometry
at the infinity. It is a graded unital K-algebra related to quantum cohomology,
and for cotangent bundle, it recovers the homology of a loop space. During the talk
I will define symplectic cohomology and show some of the results on its (non) vanishing.
Time permitting, I will also mention natural TQFT algebraic structure on it.
16:00
Thick triangles and a theorem of Gromov
Abstract
A theorem of Gromov states that the number of generators of the fundamental group of a manifold with nonnegative
curvature is bounded by a constant which only depends on the dimension of the manifold. The main ingredient
in the proof is Toponogov’s theorem, which roughly speaking says that the triangles on spaces with positive
curvature, such as spheres, are thick compared to triangles in the Euclidean plane. In the talk I shall explain
this more carefully and deduce Gromov’s result.
16:00
Symplectic reduction and geometric invariant theory
Abstract
I will explain a beautiful link between differential and algebraic geometry, called the Kempf-Ness Theorem, which says that the natural notions of "quotient spaces" in the symplectic and algebraic categories can often be identified. The result will be presented in its most general form where actions are not necessarily free and hence I will also introduce the notion of stratified spaces.
16:00
The Reidemeister graphs (Joint work with Daniele Celoria)
Abstract
We describe a locally finite graph naturally associated to each knot type K, called the Reidemeister graph. We determine several local and global properties of this graph and prove that the graph-isomorphism type is a complete knot invariant up to mirroring. Lastly (time permitting), we introduce another object, relating the Reidemeister and Gordian graphs, and briefly present an application to the study of DNA.
16:00
Classifying Higgs bundles, stable and unstable
Abstract
The aim of this talk is to describe the classification problem for Higgs bundles and to explain how a combination of classical and Non-Reductive Geometric Invariant Theory might be used to solve this classification problem.
I will start by defining Higgs bundles and their physical origins. Then, I will present the classification problem for Higgs bundles. This will involve introducing the "stack" of Higgs bundles, a purely formal object which allows us to consider all isomorphism classes of Higgs bundles at once. Finally, I will explain how the stack of Higgs bundles can be described geometrically. As we will see, the stack of Higgs bundles can be decomposed into disjoint strata, each consisting of Higgs bundles of a given "instability type". Both classical and Non-Reductive GIT can then be applied to obtain moduli spaces for each of the strata.
16:00
Operads with homological stability and infinite loop space structures
Abstract
In a recent preprint, Basterra, Bobkova, Ponto, Tillmann and Yeakel
defined operads with homological stability (OHS) and showed that after
group-completion, algebras over an OHS group-complete to infinite loop
spaces. This can in particular be used to put a new infinite loop space
structure on stable moduli spaces of high-dimensional manifolds in the
sense of Galatius and Randal-Williams, which are known to be infinite
loop spaces by a different method.
To complicate matters further, I shall introduce a mild strengthening of
the OHS condition and construct yet another infinite loop space
structure on these stable moduli spaces. This structure turns out to be
equivalent to that constructed by Basterra et al. It is believed that
the infinite loop space structure due to Galatius--Randal-Williams is
also equivalent to these two structures.
16:00
The Einstein Equation on Manifolds with Large Symmetry Groups
Abstract
In this talk I will discuss the problem of finding Einstein metrics in the homogeneous and cohomogeneity one setting.
In particular, I will describe a recent result concerning existence of solutions to the Dirichlet problem for cohomogeneity one Einstein metrics.
16:00
The Quantum Steenrod Square and its Properties
Abstract
Topologists have the Steenrod squares, a collection of additive homomorphisms on the Z/2 cohomology of a space M. They can be defined axiomatically and are often be regarded as algebraic operations on cohomology groups (for many purposes). However, Betz and Cohen showed that they could be viewed geometrically.
Symplectic geometers have quantum cohomology, which on a symplectic manifold M is a deformation of singular cohomology using holomorphic spheres.
The geometric definition of the Steenrod square extends to quantum cohomology. This talk will describe the Steenrod square and quantum cohomology in terms of the intersection product, and then give a description of this quantum Steenrod square by putting these both together. We will describe some properties of the quantum squares, such as the quantum Cartan formula, and perform calculations in certain cases.
16:00
C^infinity Algebraic Geometry (with corners)
Abstract
Manifolds, the main objects of study in Differential Geometry, do not have nice categorical properties. For example, the category of manifolds with smooth maps does not contain all fibre products.
The algebraic counterparts to this (varieties and schemes) do have nice categorical properties.
A method to ‘fix’ these categorical issues is to consider C^infinity schemes, which generalise the category of manifolds using algebraic geometry techniques. I will explain these concepts, and how to translate to manifolds with corners, which is joint work with my supervisor Professor Dominic Joyce.
16:00
Quiver varieties revisited
Abstract
Quiver varieties are an attractive research topic of many branches of contemporary mathematics - (geometric) representation theory, (hyper)Kähler differential geometry, (symplectic) algebraic geometry and quantum algebra.
In the talk, I will define different types of quiver varieties, along with some interesting examples. Afterwards, I will focus on Nakajima quiver varieties (hyperkähler moduli spaces obtained from framed-double-quiver representations), stating main results on their topology and geometry. If the time permits, I will say a bit about the symplectic topology of them.
16:00
The Drinfeld Centre of a Symmetric Fusion Category
Abstract
This talk will be a gentle introduction to braided fusion categories, with the eventual aim to explain a result from my thesis about symmetric fusion categories.
Fusion categories are certain kinds of monoidal categories. They can be viewed as a categorification of the finite dimensional algebras, and appear in low-dimensional topological quantum field theories, as well as being studied in their own right. A braided fusion category is additionally commutative up to a natural isomorphism, symmetry is an additional condition on this natural isomorphism. Computations in these categories can be done pictorially, using so-called string diagrams (also known as ``those cool pictures'').
In this talk I will introduce fusion categories using these string diagrams. I will then discuss the Drinfeld centre construction that takes a fusion category and returns a braided fusion category. We then show, if the input is a symmetric fusion category, that this Drinfeld centre carries an additional tensor product. All of this also serves as a good excuse to draw lots of pictures.
Invertible Topological Field Theories
Abstract
Topological field theories (TFT's) are physical theories depending only on the topological properties of spacetime as opposed to also depending on the metric of spacetime. This talk will introduce topological field theories, and the work of Freed and Hopkins on how a class of TFT's called "invertible" TFT's describe certain states of matter, and are classified by maps of spectra. Constructions of field theories corresponding to specific maps of spectra will be described.
16:00
A discussion of Lurie's proof of the cobordism hypothesis
Abstract
Despite its fame there appears to be little literature outlining Lurie's proof sketched in his expository article "On the classification of topological field theories." I shall embark on the quixotic quest to explain how the cobordism hypothesis is formalised and give an overview of Lurie's proof in one hour. I will not be able to go into any of the motivation, but I promise to try to make the talk as accessible as possible.
Moduli spaces of singular curves
Abstract
Moduli spaces attempt to classify all mathematical objects of a particular type, for example algebraic curves or vector bundles, and record how they 'vary in families'. Often they are constructed using Geometric Invariant Theory (GIT) as a quotient of a parameter space by a group action. A common theme is that in order to have a nice (eg Hausdorff) space one must restrict one's attention to a suitable subclass of 'stable' objects, in effect leaving certain badly behaved objects out of the classification. Assuming no prior familiarity, I will elucidate the structure of instability in GIT, and explain how recent progress in non-reductive GIT allows one to construct moduli spaces for these so-called 'unstable' objects. The particular focus will be on the application of this principle to the GIT construction of the moduli space of stable curves, leading to moduli spaces of curves of fixed singularity type.
16:00
Manifolds with a-corners & moduli space of Morse flows
Abstract
Manifolds with ordinary boundary/corners have found their presence in differential geometry and PDEs: they form Man^b or Man^c category; and for boundary value problems, they are nice objects to work on. Manifolds with analytical corners -- a-corners for short -- form a larger category Man^{ac} which contains Man^c, and they can in some sense be viewed as manifolds with boundary at infinity.
In this talk I'll walk you through the definition of manifolds with corners and a-corners, and give some examples to illustrate how the new definition will help.
Symplectic Cohomology for Quiver Varieties
Abstract
Floer (co)homology, invariant which recovers periodic orbits of a Hamiltonian system, is the central topic of symplecic topology at present. Its analogue for open symplecic manifolds is called symplectic (co)homology. Our goal is to compute this invariant for big family of spaces called Nakajima's Quiver Varieties, spaces obtained as hyperkahler quotients of representation spaces of quivers.
Integrating without integrating: weights of Kontsevich graphs
Abstract
Abstract: The Kontsevich graph weights are period integrals whose
values make Kontsevich's star-product associative for any Poisson
structure. We illustrate, by using software, to what extent these
weights are determined by their properties: the associativity
constraint for the star-product (for all Poisson structures), the
multiplicativity (decomposition into prime graphs), the cyclic
relations, and some relations due to skew-symmetry. Up to the order 4
in ℏ we express all the weights in terms of 10 parameters (6
parameters modulo gauge-equivalence), and we verify pictorially that
the star-product expansion is associative modulo ō(ℏ⁴) for every value
of the 10 parameters. This is joint work with Arthemy Kiselev.
C^infinity Rings and Manifolds with Corners
Abstract
Manifolds with corners are similar to manifolds, yet are locally modelled on subsets $[0,\infty)^k \times R^{n-k}$. I will discuss some of the theory of these objects, as well as introducing $C^\infty$-rings. This will explain the background to my current research in $C^\infty$-Algebraic Geometry. Time permitting, I will briefly discuss my current research on $C^\infty$-schemes with corners and motivation of this research.
Finiteness properties of subgroups of hyperbolic groups
Abstract
Hyperbolic groups were introduced by Gromov and generalize the fundamental groups of closed hyperbolic manifolds. Since a closed hyperbolic manifold is aspherical, it is a classifying space for its fundamental group, and a hyperbolic group will also admit a compact classifying space in the torsion-free case. After an introduction to this and other topological finiteness properties of hyperbolic groups and their subgroups, we will meet a construction of R. Kropholler, building on work of Brady and Lodha. The construction gives an infinite family of hyperbolic groups with finitely-presented subgroups which are non-hyperbolic by virtue of their finiteness properties. We conclude with progress towards determining minimal examples of the "sizeable" graphs which are needed as input to the construction.
The Loop Theorem of Papakyriakopoulos
Abstract
The study of 3-manifolds is founded on the strong connection between algebra and topology in dimension three. In particular, the sine qua non of much of the theory is the Loop Theorem, stating that for any embedding of a surface into a 3-manifold, a failure to be injective on the fundamental group is realised by some genuine embedding of a disc. I will discuss this theorem and give a proof of it.
Geometric Invariant Theory and its Variation
Abstract
A central tool in the construction of moduli spaces throughout algebraic geometry and beyond, geometric invariant theory (GIT) aims to sensibly answer the question, "How can we quotient an algebraic variety by a group action?" In this talk I will explain some basics of GIT and indicate how it can be used to build moduli spaces, before exploring one of its salient features: the non-canonicity of the quotient. I will show how the dependence on an additional parameter, a choice of so-called 'linearisation', leads to a rich 'wall crossing' picture, giving different interrelated models of the quotient. Time permitting, I will also speak about recent developments in non-reductive GIT, and joint work extending this dependence to the non-reductive setting.
Spectra
Abstract
Spectra provide a way of understanding cohomology theories in terms of homotopy theory. Spectra are a bit like CW-complexes, they have homotopy groups which may be used to characterize homotopy equivalences. However, a spectrum has homotopy groups in negative degrees, too, and they are abelian groups in all degrees. We will discuss spectra representing ordinary cohomology, bordism, and K-theory.
Cohomological Donaldson-Thomas Theory and quivers with potential
Abstract
Donaldson-Thomas theory was born as a mean to attach to Calabi-Yau 3-manifolds integers, invariant under small deformation of the complex structure. Subsequent evolutions have replaced integers with cohomological invariants, more flexible and with a broader range of applicable cases.
This talk is meant to be a gentle induction to the topic. We start with an introduction on virtual fundamental classes, and how they relate to deformation and obstruction spaces of a moduli space; then we pass on to the Calabi-Yau 3-dimensional case, stressing how some homological conditions are essential and can lead to generalisation. First we describe the global construction using virtual fundamental classes, then the local approach via the Behrend function and the virtual Euler characteristic.
We introduce quivers with potential, which provide a profitable framework in which to build DT-theory, as they are a source of moduli spaces locally presented as degeneracy loci. Finally, we overview the problem of categorification, introducing the DT-sheaf and showing how it relates to the numerical invariants.
A hyperkähler metric on the cotangent bundle of a complex reductive group
Abstract
Abstract: A hyperkähler manifold is a Riemannian manifold $(M,g)$ with three complex structures $I,J,K$ satisfying the quaternion relations, i.e. $I^2=J^2=K^2=IJK=-1$, and such that $(M,g)$ is Kähler with respect to each of them. I will describe a construction due to Kronheimer which gives such a structure on the cotangent bundle of any complex reductive group.
Cohomogeneity one Ricci solitons
Abstract
Abstract: Ricci solitons are genralizations of Einstein metrics which have become subject of much interest over the last decade. In this talk I will give a basic introduction to these metrics and discuss how to reformulate the Ricci soliton equation as a Hamiltonian system assuming some symmetry conditions. Using this approach we will construct explicit solutions to the soliton equation for manifolds of dimension 5.
Deligne’s construction for extending connections
Abstract
Let X be a complex manifold with divisor D. I will describe a construction, which is due to Deligne, whereby given a choice of a branch of the logarithm one can canonically extend a holomorphic flat connection on the complement of the divisor X\D to a flat logarithmic connection on X.
Mixed Hodge structures of parabolic character varieties via geometric methods
Quasi-Abelian Categories in Analytic Geometry
Abstract
In this talk I will give several perspectives on the role of
quasi-abelian categories in analytic geometry. In particular, I will
explain why a certain completion of the category of Banach spaces is a
convenient setting for studying sheaves of topological vector spaces on
complex manifolds. Time permitting, I will also argue why this category
may be a good candidate for a functor of points approach to (derived)
analytic geometry.
The moduli space of representations of the fundamental group of a punctured Riemann surface into SL(2,C)
Abstract
I will collect some results about the study of topological and algebraic invariants of this moduli space by using non-abelian Hodge theory. Some keywords are: Higgs bundles, Mixed Hodge structures.
Equivariant Topological Quantum Field Theory
Abstract
Topological Quantum Field Theories are functors from a category of bordisms of manifolds to (usually) some categorification of the notion of vector spaces. In this talk we will first discuss why mathematicians are interested in these in general and an overview of the relevant notions. After this we will have a closer look at the example of functors from the bordism category of 1-, 2- and 3-dimensional manifolds equipped with principal G-bundles, for G a finite group, to nice categorifications of vector spaces.
Higgs bundles, spectral data and mirror symmetry
Abstract
Higgs bundles have a rich structure and play a role in many different areas including gauge theory, hyperkähler geometry, surface group representations, integrable systems, nonabelian Hodge theory, mirror symmetry and Langlands duality. In this introductory talk I will explain some basic notions of G-Higgs – including the Hitchin fibration and spectral data - and illustrate how this relates to mirror symmetry.
A Theorem by Thom
Abstract
In 1954 Thom showed that there is an isomorphism between the cobordism groups of manifolds and the homotopy groups of the Thom spectrum. I will define what these words mean and present the explicit, geometric construction of the isomorphism.
Morse theory of the distance function
Abstract
A basic result in Morse theory due to Reeb states that a compact manifold which admits a smooth function with only two, non-degenerate critical points is homeomorphic to the sphere. We shall apply this idea to distance function associated to a Riemannian metric to prove the diameter-sphere theorem of Grove-Shiohama: A complete Riemannian manifold with sectional curvature $\geq 1$ and diameter $> \pi / 2$ is homeomorphic to a sphere. I shall not assume any knowledge about curvature for the talk.
Branched Covers of Cube Complexes
Abstract
I will discuss the theory of branched covers of cube complexes as a method of hyperbolisation. I will show recent results using this technique. Time permitting I will discuss a form of Morse theory on simplicial complexes and show how these methods combined with the earlier methods allow one to create groups with interesting finiteness properties.