16:30
Forthcoming events in this series
16:30
16:30
Partition regularity of $x+y=z^2$ over $\mathbb{Z}/p\mathbb{Z}$
Abstract
Consider the following question. Given a $k$-colouring of the positive integers, must there exist a solution to $x+y=z^2$ with $x,y,z$ all the same colour (and not all equal to 2)? Using $10$ colours a counterexample can be given to show that the answer is "no". If one instead asks the same question over $\mathbb{Z}/p\mathbb{Z}$ for some prime $p$, the answer turns out to be "yes", provided $p$ is large enough in terms of the number of colours used. I will talk about how to prove this using techniques developed by Ben Green and Tom Sanders. The main ingredients are a regularity lemma, a counting lemma and a Ramsey lemma.
16:30
The degree zero part of the motivic polylogarithm and the Deligne-Beilinson cohomology
Abstract
Last year, G. Kings and D. Rossler related the degree zero part of the polylogarithm
on abelian schemes pol^0 with another object previously defined by V. Maillot and D.
Rossler. More precisely, they proved that the canonical class of currents constructed
by Maillot and Rossler provides us with the realization of pol^0 in analytic Deligne
cohomology.
I will show that, adding some properness conditions, it is possible to give a
refinement of Kings and Rossler’s result involving Deligne-Beilinson cohomology
instead of analytic Deligne cohomology.
16:30
Linear (in)equalities in primes
Abstract
Many theorems and conjectures in prime number theory are equivalent to finding solutions to certain linear equations in primes -- witness Goldbach's conjecture, the twin prime conjecture, Vinogradov's theorem, finding k-term arithmetic progressions, etcetera. Classically these problems were attacked using Fourier analysis -- the 'circle' method -- which yielded some success, provided that the number of variables was sufficiently large. More recently, a long research programme of Ben Green and Terence Tao introduced two deep and wide-ranging techniques -- so-called 'higher order Fourier analysis' and the 'transference principle' -- which reduces the number of required variables dramatically. In particular, these methods give an asymptotic formula for the number of k-term arithmetic progressions of primes up to X. In this talk we will give a brief survey of these techniques, and describe new work of the speaker, partially ongoing, which applies the Green-Tao machinery to count prime solutions to certain linear inequalities in primes -- a 'higher order Davenport-Heilbronn method'.
16:30
Iterating the algebraic étale-Brauer obstruction
Abstract
A question by Poonen asks whether iterating the étale-Brauer set can give a finer obstruction set. We tackle the algebraic version of Poonen's question and give, in many cases, a negative answer.
Reduction Types of Abelian Varieties
Abstract
Much of the arithmetic behaviour of an elliptic curve can be understood by examining its mod p reduction at some prime p. In this talk, we will aim to explain some of the ways we can define the mod p reduction, and the classifications of which reduction types occur.
Topics to be covered include the classical reduction types (good/multiplicative/additive), the Kodaira-Neron reduction types that refine them, and the Raynaud parametrisation of a semistable abelian variety. Time permitting, we may also discuss joint work with Vladimir Dokchitser classifying the semistable reduction types of 2-dimensional abelian varieties.
IP sets, recurrence, and polynomials
Abstract
I will discuss the many appearances of the class of IP sets in classical theorems of combinatorial number theory and ergodic theory. Our point of departure will be the celebrated theorem of Hindman on partition regularity of IP sets, which is crucial for the introduction of IP-limits. We then discuss how existence of certain IP-limits translates into recurrence statements, which in turn give rise to results in number theory via the Furstenberg correspondence principle. Throughout the talk, the methods of ergodic theory will play an important role - however, no prior familiarity with them is required.
Characterising the Integers in the Rationals
Abstract
Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.
The Arithmetic of K3 Surfaces
Abstract
The study of rational points on K3 surfaces has recently seen a lot of activity. We discuss how to compute the Picard rank of a K3 surface over a number field, and the implications for the Brauer-Manin obstruction.
Some ideas on rational/integral points on algebraic curves
Abstract
I will introduce classical results on finiteness theorem with a way of connecting them to idea of covering spaces. I will talk about the proof of FLT under this connection.
Algebraic Automorphic Forms and the Langlands Program
Abstract
In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture.
Almost similar p-adic representations: crystalline versus étale.
Abstract
I will introduce the general idea of p-adic Hodge theory from the view point of a beginner. Also, I will give a sketch of the proof of the crystalline comparison theorem in the case of good reduction using 'almost mathematics'.
Diophantine geometry over function fields
Abstract
Many hard problems in Diophantine geometry have analogues over function fields which are less hard. I will give some examples.
Perfectoid spaces and the tilting equivalence
Abstract
We will give a sketch overview of Scholze's theory of perfectoid spaces and the tilting equivalence, starting from Huber's geometric approach to valuation theory. Applications to weight-monodromy and p-adic Hodge theory we will only hint at, preferring instead to focus on examples which illustrate the philosophy of tilting equivalence.
A Survey of Results on the Section Conjecture
Abstract
After some generalities on étale fundamental groups and anabelian geometry, I will explore some of the current results on the section conjecture, including those of Koenigsmann and Pop on the birational section conjecture, and a recent unpublished result of Mohamed Saidi which reduces the section conjecture for finitely generated fields over the rationals to the case of number fields.
Langlands Functoriality for Symplectic Groups
Abstract
In this talk I will describe two instances of Langlands functoriality concerning the group $\mathrm{Sp}_{2n}$. I will then very briefly explain how this enables one to attach Galois representations to automorphic representations of (inner forms of) $\mathrm{Sp}_{2n}$.
A multiplicative analogue of Schnirelmann's Theorem
Abstract
In 1937 Vinogradov showed that every sufficiently large odd number is the sum of three primes, using bounds on the sums of additive characters taken over the primes. He was improving, rather dramatically, on an earlier result of Schnirelmann, which showed that every sufficiently large integer is the sum of at most 37 000 primes. We discuss a natural analogue of this question in the multiplicative group (Z/pZ)* and find that, although the current unconditional character sum technology is too weak to use Vinogradov's approach, an idea from Schnirelmann's work still proves fruitful. We will use a result of Selberg-Delange, an application of a small sieve, and a few easy ideas from additive combinatorics.
O-minimality and applications
Abstract
In this talk I will discuss the notion of o-minimality, which can be approached from either a model-theoretic standpoint, or an algebraic one. I will exhibit some o-minimal structures, focussing on those most relevant to number theorists, and attempt to explain how o-minimality can be used to attain an assortment of results.
Symplectic and Orthogonal Automorphic Representations
Abstract
In this talk I will describe Arthur's classification of automorphic representations of symplectic and orthogonal groups using automorphic representations of $\mathrm{GL}_N$.