Past Kinderseminar

26 January 2022
15:00
Arturo Rodriguez Fanlo
Abstract

This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

4 March 2020
14:00
Saad Labyad
Abstract

Hawkes processes are a class of point processes used to model self-excitation and cross-excitation between different types of events. They are characterized by the auto-regressive structure of their conditional intensity, and there exists several extensions to the original linear Hawkes model. In this talk, we start by defining Hawkes processes and give a brief overview of some of their basic properties. We then review some approaches to parametric and non-parametric estimation of Hawkes processes and discuss some applications to problems with large data sets in high frequency finance and social networks.

5 February 2020
14:00
Arturo Rodriguez
Abstract

Do you feel unable to explain why maths are cool? Are you looking for fun and affordable theorems for your non-mathematician friends? This is your topic.

This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?

22 January 2020
14:00
Esteban Gomezllata Marmolejo
Abstract

The $k$-th complete homogeneous symmetric polynomial in $m$ variables $h_{k,m}$ is the sum of all the monomials of degree $k$ in $m$ variables. They are related to the Symmetric powers of vector spaces. In this talk we will present some of their standard properties, some classic combinatorial results using the "stars and bars" argument, as well as an interesting result: the complete homogeneous symmetric polynomial applied to $(1+X_i)$ can be written as a linear combination of complete homogeneous symmetric poynomials in the $X_i$. To compute the coefficients of this linear combination, we extend the classic "stars and bars" argument.

4 December 2019
11:00
Abstract

Finitely presented groups are a natural algebraic generalisation of the collection of finite groups. Unlike the finite case there is almost no hope of any kind of classification.

The goal of random groups is therefore to understand the properties of the "typical" finitely presented group. I will present a couple of models for random groups and survey some of the main theorems and open questions in the area, demonstrating surprising correlations between these probabilistic models, geometry and analysis.

20 November 2019
15:00
Abstract

In this talk, I will introduce the notion of a sheaf on a topological space. I will then explain why "topological spaces" are an artificial limitation on enjoying life (esp. cohomology) to the fullest and what to do about that (answer: sites). Sheaves also fail our needs, but they have a suitable natural upgrade (i.e. stacks).
This talk will be heavily peppered with examples that come from the world around you (music, torsors, etc.).
 

30 October 2019
12:00
Brian Tyrrell
Abstract

In 2010 Coecke, Sadrzadeh, and Clark formulated a new model of natural language which operates by combining the syntactics of grammar and the semantics of individual words to produce a unified ''meaning'' of sentences. This they did by using category theory to understand the component parts of language and to amalgamate the components together to form what they called a ''distributional compositional categorical model of meaning''. In this talk I shall introduce the model of Coecke et. al., and use it to compare the meaning of sentences in Irish and in English (and thus ascertain when a sentence is the translation of another sentence) using a cosine similarity score.

The Irish language is a member of the Gaelic family of languages, originating in Ireland and is the official language of the Republic of Ireland.

16 October 2019
11:00
Esteban Gomezllata Marmolejo
Abstract

The triangular inequality is central in Mathematics. What would happen if we reverse it? We only obtain trivial spaces. However, if we mix it with an order structure, we obtain interesting spaces. We'll present linear antimetrics, prove a "masking theorem", and then look at a corollary which tells us about the "twin paradox" in special relativity; time is antimetric!

29 May 2019
11:00
Arturo Rodriguez
Abstract

Hilbert's fifth problem asks informally what is the difference between Lie groups and topological groups. In 1950s this problem was solved by Andrew Gleason, Deane Montgomery, Leo Zippin and Hidehiko Yamabe concluding that every locally compact topological group is "essentially" a Lie group. In this talk we will show the complete proof of this theorem.

Pages