A discontinuous Galerkin finite element method for Hamilton–Jacobi–Bellman equations on piecewise curved domains, with applications to Monge–Ampère type equations
Abstract
We introduce a discontinuous Galerkin finite element method (DGFEM) for Hamilton–Jacobi–Bellman equations on piecewise curved domains, and prove that the method is consistent, stable, and produces optimal convergence rates. Upon utilising a long standing result due to N. Krylov, we may characterise the Monge–Ampère equation as a HJB equation; in two dimensions, this HJB equation can be characterised further as uniformly elliptic HJB equation, allowing for the application of the DGFEM