Forthcoming events in this series


Tue, 31 May 2011
12:00
L3

Cancelled

Prof S Klainerman
(Princeton University)
Tue, 10 May 2011
12:00
L3

Simple supersymmetric scattering amplitudes in higher dimensions

Dr Rutger Boels
(DESY, Hamburg)
Abstract

In field theory simple forms of certain scattering amplitudes in four dimensional theories with massless particles are known. This has been shown to be closely related to underlying (super)symmetries and has been a source of inspiration for much development in the last years. Away from four dimensions much less is known with some concrete development only in six dimensions. I will show how to construct promising on-shell superspaces in eight and ten dimensions which permit suggestively simple forms of supersymmetric four point scattering amplitudes with massless particles. Supersymmetric on-shell recursion relations which allow one to compute in principle any amplitude are constructed, as well as the three point `seed' amplitudes to make these work. In the three point case I will also present some classes of supersymmetric amplitudes with a massive particle for the type IIB superstring in a flat background.

Tue, 08 Jun 2010

12:00 - 13:00
L3

G_2 structures, rational curves, and ODEs

Dr Dunajski
(DAMTP)
Abstract

Consider the space M of parabolas y=ax^2+bx+c, with (a, b, c) as coordinates on M. Two parabolas generically intersect at two (possibly complex) points, and we can define a conformal structure on M by declaring two points to be null separated iff the corresponding parabolas are tangent. A simple calculation of discriminant shows that this conformal structure is flat.

In this talk (based on joint works with Godlinski and Sokolov) I shall show how replacing parabolas by rational plane curves of higher degree allows constructing curved conformal structures in any odd dimension. In dimension seven one can use this "twistor" construction to find G_2 structures in a conformal class.

Tue, 09 Mar 2010
12:00
L3

Characterization and Rigidity of the Kerr-Newman Solution

Willie W. Wong
(Cambridge)
Abstract

A celebrated result in mathematical general relativity is the uniqueness of the Kerr(-Newman) black-holes as regular solutions to the stationary and axially-symmetric Einstein(-Maxwell) equations. The axial symmetry can be removed if one invokes Hawking's rigidity theorem. Hawking's theorem requires, however, real analyticity of the solution. A recent program of A. Ionescu and S. Klainerman seeks to remove the analyticity requirement in the vacuum case. They were able to show that any smooth extension of "Kerr data" prescribed on the horizon, satisfying the Einstein vacuum equations, must be Kerr, using a characterization of Kerr metric due to M. Mars. In this talk I will give a characterization for the Kerr-Newman metric, and extend the rigidity result to cover the electrovacuum case.

Mon, 08 Mar 2010

12:00 - 13:00
L3

New approaches to problems posed by Sir Roger Penrose

George Sparling
(University of Pittsburgh)
Abstract

I will outline two areas currently under study by myself and my co-workers, particularly Jonathan Holland: one concerns the relation between the exceptional Lie group G_2 and Einstein's gravity; the second will introduce and apply the concept of a causal geometry.

Tue, 26 Jan 2010
12:00
L3

Gravity Quantized

Jerzy Lewandowski
(Warsaw)
Abstract

Canonical quantization of gravitational field will beconsidered. Examples for which the procedure can be completed (without reducingthe degrees of freedom) will be presented and discussed. The frameworks appliedwill be: Loop Quantum Gravity, relational construction of the Dirac observablesand deparametrization.

 

Tue, 01 Dec 2009
12:00
L3

On the classification of extremal black holes

James Lucietti
(Imperial)
Abstract

Extremal black holes are of interest as they are expected have simpler quantum descriptions than their non-extremal counterparts.  Any extremal black hole solution admits a well defined notion of a near horizon geometry which solves the same field equations. I will describe recent progress on the general understanding of such near horizon geometries in four and higher dimensions. This will include the proof of near-horizon symmetry enhancement and the explicit classification of near-horizon geometries (in a variety of settings). I will also discuss how one can use such results to prove classification/uniqueness theorems for asymptotically flat extremal vacuum black holes in four and five dimensions.

Tue, 17 Nov 2009
12:00
L3

Algebraically special solutions in more than four dimensions

Harvey Reall
(DAMTP Cambridge)
Abstract

Algebraic classification of the Weyl tensor is an important tool for solving the Einstein equation. I shall review the classification for spacetimes of dimension greater than four, and recent progress in using it to construct new exact solutions. The higher-dimensional generalization of the Goldberg-Sachs theorem will be discussed.

Tue, 03 Nov 2009
12:00
L3

Late-time tails of self-gravitating waves

Piotr Bizon
(Jagiellonian University)
Abstract
I will present recent joint work with Tadek Chmaj and Andrzej Rostworowski concerning late-time behavior of self-gravitating massless fields.  We show that the asymptotic convergence to a static equilibrium (Minkowski or Schwarzschild) is an essentially nonlinear phenomenon which cannot, despite many assertions to the contrary in the literature, be properly described by the theory of linearized perturbations on a fixed static asymptotically flat background (so called Price's tails). To substantiate this claim in the case of small initial data we compute the late-time tails (both the decay rate and the amplitude) in four and higher even spacetime dimensions using nonlinear perturbation theory and we verify the results numerically. The reason for considering this problem in higher dimensions was motivated by the desire to demonstrate an accidental and misleading character of equality of decay rates of
linear and nonlinear tails in four dimensions. 

Tue, 20 Oct 2009
12:00
L3

Relations between Gowdy and Bianchi spacetimes

Alan Rendall
(AEI Golm)
Abstract

Two classes of solutions of the Einstein equations with symmetry which

are frequently studied are the Bianchi and Gowdy models. The aim of this

talk is to explain certain relations between these two classes of

spacetimes which can provide insights into the dynamics of both. In

particular it is explained that the special case of the Gowdy models known as circular loop spacetimes are Bianchi models in disguise. Generalizations of Gowdy spacetimes which can be thought of as inhomogeneous perturbations of some of the Bianchi models are introduced.

Results concerning their dynamics are presented.

Tue, 23 Jun 2009
12:00
L3

Non-existence of stationary two-black-hole configurations

Joerg Hennig
(AEI Golm)
Abstract
We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-Gómez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.

Mon, 22 Jun 2009

12:00 - 13:00
L3

Hidden symmetries and higher-dimensional rotating black holes

Dr D. Kubiznak
(Cambridge)
Abstract

The 4D rotating black hole described by the Kerr geometry possesses many of what was called by Chandrasekhar "miraculous" properties. Most of them can be related to the existence of a fundamental hidden symmetry called the principal conformal Killing-Yano (PCKY) tensor. In my talk I shall demonstrate that, in this context, four dimensions are not exceptional and that the (spherical horizon topology) higher-dimensional rotating black holes are very similar to their four-dimensional cousins. Namely, I shall present the most general spacetime admitting the PCKY tensor and show that is possesses the following properties: 1) it is of the algebraic type D,  2) it allows a separation of variables for the Hamilton-Jacobi, Klein-Gordon, Dirac, gravitational, and stationary string equations, 3) the geodesic motion in such a spacetime is completely integrable, 4) when the Einstein equations with the cosmological constant are imposed the metric becomes the Kerr-NUT-(A)dS spacetime. Some of these properties remain valid even when one includes the electromagnetic field.

Tue, 16 Jun 2009
12:00
L3

From the geometry of spacetime to the geometry of numbers

Stefan Hollands
(Cardiff)
Abstract

One of the major open challenges in general relativity is the classification of black hole solutions in higher dimensional theories. I will explain a recent result in this direction in the context of Kaluza-Klein spacetimes admitting a sufficient number N of commuting U(1)-symmetries. It turns out that the black holes in such a theory are characterized by the usual asymptotic charges, together with certain combinatorical data and moduli. The combinatorial data characterize the nature of the U(1)^N-action, and its analysis is closely related to properties of integer lattices and questions in the area of geometric number theory. I will also explain recent results on extremal black holes which show that such objects display remarkable ``symmetry enhancement'' properties
Tue, 02 Jun 2009
12:00
L3

A black hole uniqueness theorem.

Spyridon Alexakis
(MIT)
Abstract
I will discuss recent joint work with A. Ionescu and S.
Klainerman on the black hole uniqueness problem. A classical result of
Hawking (building on earlier work of Carter and Robinson) asserts that any
vacuum, stationary black hole exterior region must be isometric to the
Kerr exterior, under the restrictive assumption that the space-time metric
should be analytic in the entire exterior region.
We prove that Hawking's theorem remains valid without the assumption of
analyticity, for black hole exteriors which are apriori assumed to be "close"
to the Kerr exterior solution in a very precise sense. Our method of proof
relies on certain geometric Carleman-type estimates for the wave operator.