We begin by reviewing numerical methods for problems in one variable and find that univariate polynomials are the starting point for most of them. A similar review in several variables, however, reveals that multivariate polynomials are not so important. Why? On the other hand in pure mathematics, the field of algebraic geometry is precisely the study of multivariate polynomials. Why?

# Past Forthcoming Seminars

## Further Information:

Recently, much progress has been made on the general problem of decomposing a dense (usually complete) graph into a given family of sparse graphs (e.g. Hamilton cycles or trees). I will present a new result of this type: that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result resolves the Oberwolfach problem for large graphs.

This is joint work with Peter Keevash.

Let k be a characteristic $p>0$ perfect field, V be a complete DVR whose residue field is $k$ and fraction field $K$ is of characteristic $0$. We denote by $\mathcal{E} _K$ the Amice ring with coefficients in $K$, and by $\mathcal{E} ^\dagger _K$ the bounded Robba ring with coefficients in $K$. Berthelot's classical theory of Rigid Cohomology over varieties $X/k((t))$ gives $\mathcal{E} _K$-valued objects. Recently, Lazda and Pal developed a refinement of rigid cohomology,

i.e. a theory of $\mathcal{E} ^\dagger _K$-valued Rigid Cohomology over varieties $X/k((t))$. Using this refinement, they proved a semistable version of the variational Tate conjecture.

The purpose of this talk is to introduce to a theory of arithmetic D-modules with $\mathcal{E} ^\dagger _K$-valued cohomology which satisfies a formalism of Grothendieck’s six operations.

In this talk we will show how the floating point errors in the simulation of SDEs (stochastic differential equations) can be modelled as stochastic. Furthermore, we will show how these errors can be corrected within a multilevel Monte Carlo approach which performs most calculations with low precision, but a few calculations with higher precision. The same procedure can also be used to correct for errors in converting from uniform random numbers to approximate Normal random numbers. Numerical results will be generated on both CPUs (using single/double precision) and GPUs (using half/single precision).

With growing population of humans being clustered in large cities and connected by fast routes more suitable environments for epidemics are being created. Topped by rapid mutation rate of viral and bacterial strains, epidemiological studies stay a relevant topic at all times. From the beginning of 2019, the World Health Organization publishes at least five disease outbreak news including Ebola virus disease, dengue fever and drug resistant gonococcal infection, the latter is registered in the United Kingdom.

To control the outbreaks it is necessary to gain information on mechanisms of appearance and evolution of pathogens. Close to all disease-causing virus and bacteria undergo a specialization towards a human host from the closest livestock or wild fauna of a shared habitat. Every strain (or subtype) of a pathogen has a set of characteristics (e.g. infection rate and burst size) responsible for its success in a new environment, a host cell in case of a virus, and with the right amount of skepticism that set can be framed as fitness of the pathogen. In our model, we consider a population of a mutating strain of a virus. The strain specialized towards a new host usually remains in the environment and does not switch until conditions get volatile. Two subtypes, wild and mutant, of the virus share a host. This talk will illustrate findings on an explicitly independent cycling coexistence of the two subtypes of the parasite population. A rare transcritical bifurcation of limit cycles is discussed. Moreover, we will find conditions when one of the strains can outnumber and eventually eliminate the other strain focusing on an infection rate as fitness of strains.

Mysteries of isolated horizons: the Near Horizon Geometry equation, geometric characterizations of the non-extremal Kerr horizon, spacetimes foliated by non-expanding horizons.

3-dimensional null surfaces that are Killing horizons to the second order are considered. They are embedded in 4-dimensional spacetimes that satisfy the vacuum Einstein equations with arbitrary cosmological constant. Internal geometry of 2-dimensional cross sections of the horizons consists of induced metric tensor and a rotation 1-form potential. It is subject to the type D equation. The equation is interesting from the both, mathematical and physical points of view. Mathematically it involves geometry, holomorphic structures and algebraic topology. Physically, the equation knows the secrete of black holes: the only axisymmetric solutions on topological sphere correspond to the the Kerr / Kerr-de Sitter / Kerr-anti-de-Sitter non-extremal black holes or to the near horizon limit of the extremal ones. In the case of bifurcated horizons the type D equation implies another spacial symmetry. In this way the axial symmetry may be ensured without the rigidity theorem. The type D equation does not allow rotating horizons of topology different then that of the sphere (or its quotient). That completes a new local non-her theorem. The type D equation is also an integrability condition for the Near Horizon Geometry equation and leads to new results on the solution existence issue.

Seeking income during World War II, Piet Hein created the game now called Hex, marketing it through the Danish newspaper *Politiken*. The game was popular but disappeared in 1943 when Hein fled Denmark.

The game re-appeared in 1948 when John Nash introduced it to Princeton's game theory group, and became popular again in 1957 after Martin Gardner's column --- "Concerning the game of Hex, which may be played on the tiles of the bathroom floor" --- appeared in *Scientific American*.

I will survey the early history of Hex, highlighting the war's influence on Hein's design and marketing, Hein's mysterious puzzle-maker, and Nash's fascination with Hex's theoretical properties.

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

The hypoelliptic Laplacian is a family of operators indexed by $b \in \mathbf{R}^*_+$, acting on the total space of the tangent bundle of a Riemannian manifold, that interpolates between the ordinary Laplacian as $b \to 0$ and the generator of the geodesic flow as $b \to +\infty$. These operators are not elliptic, they are not self-adjoint, they are hypoelliptic. One can think of the total space of the tangent bundle as the phase space of classical mechanics; so that the hypoelliptic Laplacian produces an interpolation between the geodesic flow and its quantisation. There is a dynamical counterpart, which is a natural interpolation between classical Brownian motion and the geodesic flow.

The hypoelliptic deformation preserves subtle invariants of the Laplacian. In the case of locally symmetric spaces (which are defined via Lie groups), the deformation is essentially isospectral, and leads to geometric formulas for orbital integrals, a key ingredient in Selberg's trace formula.

In a first part of the talk, I will describe the geometric construction of the hypoelliptic Laplacian in the context of de Rham theory. In a second part, I will explain applications to the trace formula.

In a joint-work with Andrea Collevecchio and Vladas Sidoravicius, we study phase transitions in the recurrence/transience of a class of self-interacting random walks on trees, which includes the once-reinforced random walk. For this purpose, we define the branching-ruin number of a tree, which is a natural way to measure trees with polynomial growth and therefore provides a polynomial version of the branching number defined by Furstenberg (1970) and studied by R. Lyons (1990). We prove that the branching-ruin number of a tree is equal to the critical parameter for the recurrence/transience of the once-reinforced random walk on this tree. We will also mention two other results where the branching-ruin number arises as critical parameter: first, in the context of random walks on heavy-tailed random conductances on trees and, second, in the case of Volkov's M-digging random walk.