Odd systems, characterised by broken time-reversal or parity symmetry,
exhibit striking transport phenomena due to transverse responses. In this
talk, I will introduce the concept of odd diffusion, a generalisation of
diffusion in two-dimensional systems that incorporates antisymmetric tensor
components. Focusing on systems of interacting particles, I adapt a
geometric approach to derive effective transport equations and show how
interactions give rise to unusual transport in odd systems. I present
effects like enhanced self-diffusion, reversed Hall drift and even absolute
negative mobility that solely originate in odd diffusion. These results
reveal how microscopic symmetry-breaking gives rise to emergent, equilibrium
and non-equilibrium transport, with implications for soft matter, chiral
active systems, and topological materials.
Further Information
Erik Kalz is a PhD student at U Potsdam in the group of Ralf Metzler. The group focuses on nonequilibrium statistical physics and anomalous stochastic processes, with applications to biological and soft matter systems.